
Finite Differencing of Computable
Expressions

ROBERT PAIGE and SHAYE KOENIG

RutgersmThe State University of New Jersey

Finite differencing is a program optimization method that generalizes strength reduction, and provides
an efficient implementation for a host of program transformations including "iterator inversion."
Finite differencing is formally specified in terms of more basic transformations shown to preserve
program semantics. Estimates of the speedup that the technique yields are given. A full illustrative
example of algorithm derivation is presented.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Programming;
D.3.2 [Programming Languages]: Language Classifications--very high-level languages; SETL;
D.3.4. [Programming Languages]: Processors--optimization; F.2.2 [Analysis of Algori thms and
Problem Complexity]: Nonnumerical Algorithms and Problems--computations on discrete struc-
tures; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Program transformation, differentiable expression

1. INTRODUCTION

F o r m a l d i f f e r e n t i a t i o n was d e v e l o p e d b y P a i g e [33] as a g loba l p r o g r a m o p t i m i -
z a t i o n m e t h o d t h a t c a p t u r e s a c o m m o n l y o c c u r r i n g y e t d i s t i n c t i v e m e c h a n i s m of
p r o g r a m c o n s t r u c t i o n in w h i c h r e p e a t e d cos t l y c a l c u l a t i o n s a r e r e p l a c e d b y
i n e x p e n s i v e i n c r e m e n t a l c o u n t e r p a r t s . W h e n f o r m a l d i f f e r e n t i a t i o n is a p p l i e d to
a l g o r i t h m s e x p r e s s e d as h igh- leve l , luc id , b u t ine f f i c i en t p r o b l e m s t a t e m e n t s , t h e
t r a n s f o r m e d a l g o r i t h m s m a t e r i a l i z e as m o r e c o m p l e x b u t e f f ic ien t p r o g r a m ver-
s ions. T h i s m e t h o d gene ra l i z e s J o h n C o c k e ' s m e t h o d of s t r e n g t h r e d u c t i o n , a n d
p r o v i d e s a c o n v e n i e n t f r a m e w o r k w i t h w h i c h to i m p l e m e n t a h o s t of p r o g r a m
t r a n s f o r m a t i o n s , i n c l u d i n g E a r l e y ' s " i t e r a t o r i n v e r s i o n " [13].

H o w e v e r , we p r e f e r to r e p l a c e t h e t e r m s " f o r m a l d i f f e r e n t i a t i o n " a n d " r e d u c t i o n
in s t r e n g t h " b y t h e m o r e a c c u r a t e t e r m " f in i t e d i f fe renc ing ." As we see be low, t h e

This material is based upon work supported by the National Science Foundation under grant MCS79-
05293.
Authors' present address: Department of Computer Science, Hill Center for the Mathematical
Sciences, Rutgers--The State University of New Jersey, Busch Campus, New Brunswick, NJ 08903.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0700-0402 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 402-454.

Finite Differencing of Computable Expressions 403

use of the term "finite differencing" places our method in proper historical
perspective, and establishes an interesting link between modern program opti-
mization and finite difference techniques developed by sixteenth-century math-
ematicians to reduce the amount of manual labor in performing calculations {e.g.,
Napier used finite difference techniques to construct a table of logarithms, a task
that still took him a lifetime) [21].

In [33] language-independent algorithms are provided to implement finite
differencing both automatically and semiautomatically, and these algorithms are
adapted to FORTRAN and SETL. However, since the greatest success is achieved
for very high-level languages, Paige's investigations focus on set theoretic finite
differencing, which extends and formalizes Earley's transformations. Provisions
are made to accommodate these transformations within a semiautomatic imple-
mentation design for a subset of SETL, and this proposed system is illustrated by
considering and improving eight sample SETL programs.

In contrast to other program transformations, finite differencing is unusual in
many respects; for example,

(1) finite differencing may be applied over a large spectrum of language levels
and in wide-ranging contexts within these languages;

(2) finite differencing can realize swift convergence from a very high-level ineffi-
cient form of an algorithm to a much lower level, and more efficient, imple-
mentation version;

(3) finite differencing can be implemented systematically;
(4) finite differencing can be shown to yield asymptotic speedup.

In this paper, we extend and formalize the treatment of finite differencing
found in [33] in order to illuminate the issues involved in an efficient implemen-
tation. Section 2 describes the historical development of our method; Section 3
presents basic definitions and notations; Section 4 develops a formal specification
of finite differencing in terms of a small collection of program transformations;
andSections 5 and 6 discuss applications to algorithm development and improve-
ment.

2. HISTORICAL PERSPECTIVE

It is interesting to note that the origins of our method may be traced back to the
finite difference techniques introduced by the English mathematician Henry
Briggs in the sixteenth century [21]. His method, which can be used to generate
a sequence of polynomial values p(xo), p(xo + h), p(xo + 2h), . . . , hinges on the
following idea. For a given polynomial p(x) of degree n and an increment h, the
first difference polynomial

pl(x) = p (x + h) - p(x)

is of degree n - 1 or less, the second difference polynomial

p2(x) = pl (x + h) - pl (x)

is of degree n - 2 or less and, finally, p. (x) must be a constant. Thus,
to tabulate successive values of p(x) starting with x = x0, we can perform

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

404 R. Paige and S. Koenig

these two steps:

L Calculate initial values for p(x0), pl(x0) , pn(XO) and store them in t(1),
t(2), . . . , t (n + 1).

2. Genera te the desired polynomial table by iterating over the following code
block"

print x, t(1);
t(1) := t(1) + t(2);
t(2) := t(2) +- t(3);

$ print x andp(x)
$ place new values for
$ p(x), p, (x) ,
$ pn-I (X) in to

t(n) := t!n) + t(n + 1); $ t(1), t(2) t(n)
x : = x ~ h ; $

Note tha t Briggs's me thod requires only n additions in step 2 to compute each
new polynomial value, while Horner ' s rule to compute a fresh polynomial value
costs n additions and n multiplications.

In an a t t e mp t to cut down fur ther on the manual effort needed to produce
accurate mathemat ica l tables, Charles Babbage designed his analytic difference
engine to perform step 2 automatical ly once its registers (analogous to t) were set
manual ly as in step 1. Digital computers were designed to perform this same
limited task of finite differencing through World War II when accurate gunnery
tables were critically needed by the armed forces. When the von Neumann
computer was finally developed just af ter the war, it allowed, among other things,
bo th steps of Briggs's finite difference me thod to be programmed [22].

However, in the 1960s John Cocke discovered a program optimization method
he called "redqct ion in opera tor s t rength" tha t revealed the greater significance
of finite differencing as applied to the speedup of F O R T R A N programs. His
original techniques have since been generalized and implemented with various
improvements (for which see [3, 8-10, 26-30]).

We illustrate Cocke's me thod with the following simple example. Suppose tha t
an expression i * c occurring in a strongly connected program region R cannot be
moved out of R because of redefinitions to i. (We assume here tha t c is a region
constant of R.) Suppose also tha t the variable i is defined before each entry to R
and tha t all redefinitions to i within R are of the form i = i +_ d e l t a where d e l t a

is a region constant of R. Then we can use the following idea to move all
calculations of i * c out of R. Since i is defined on entrance to R, we can insert an
assignment T = i • c to a unique compiler-generated variable T just prior to each
en t ry point qf R. Within R, immediate ly before each redefinition i = i +_- d e l t a to
i, we can preserve the value of i * c in T by executing the update assignment
T = T +_- .delta * c (whose form follows from the distributive law). Note tha t
d e l t a * c is invariant, and its calculation can be moved out of R. Finally, we see
tha t all ca]culati0ns of i * c are redundan t in R and can be replaced by uses of T.
If the tinge cost of the addit ion operations inserted into R by s t rength reduct ion
is less t han the cost of the multiplications i * c removed from the original text,
then a constant , fac tor improvement in running t ime should be obtained.

Although Cocke's technique does not t rea t polynomials as special objects,
s t rength reduct ion is sufficiently powerful to t ransform a program involving
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 405

repeated calculations of a polynomial according to Horner's rule into an equiva-
lent program that essentially uses the more efficient finite difference method of
Briggs. Indeed, this is a surprising and important result that demonstrates that
the success of polynomial evaluation by differencing results from properties of
the elementary operations used to form polynomials rather than from properties
exclusive to polynomials. In other words, Cocke's method works because the
following distributive and associative laws hold for sums and products:

(i +_ d e l t a) * c ~ i * c +. d e l t a * c;

(i +_ de l ta } + c ~ (i + c) +. d e l t a .

In [10] Cocke and Schwartz extend this idea to show how reduction in strength
(which we call finite differencing) applies to a wide range of arithmetic operations
that exhibit appropriate distributive properties. Application of the idea of finite
differencing in a set theoretic context was initiated by Earley, and has been
pushed further by Fong and Ullman [15-17], who made the interesting observa-
tion that finite differencing in a set theoretic milieu Could actually improve the
asymptotic behavior of an algorithm, and that this fact could be used to develop
a theoretical characterization of the situations in which this technique applied. In
[33] finite differencing is generalized further so that the method can be applied
directly to an extensive collection of expressions involving a variety of operations
and data types.

3. DEFINITIONS AND NOTATIONS

3.1 Language

Although finite differencing can be applied to a variety of programming languages,
we illustrate our transformations throughout this paper using SETL [41], a
programming language that incorporates dictions ranging from the concrete level
of FORTRAN up to the abstract level of set theory. The distinctive data types of
SETL are its heterogeneous tuples, sets, and maps. Tuples are ordered from the
first to the last component; sets are unordered and cannot contain repeated
elements; maps are represented by sets of pairs Ix, y] each of which associates a
domain value x with a corresponding range value y. Table I lists some of the
operations that can be used to form expressions in SETL.

Like C, SETL allows assignment statements of the form

x := x op exp;

to be abbreviated

x op:= exp;

SETL also has an APL reduction operation, binop/Q, that extends a binary
associative operator binop to an operation over all the elements xl, x 2 , . . . , x, of
a set or tuple Q; that is,

binop/Q = xl binop x2 binop . . . binop x,.

Much of the power of SETL is due to its iterators, which provide mechanisms
for constrained search through sets and tuples. These iterators can be combined

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

406 • R. Pa!ge and S. Koenig

Table I. Expression Forms in SETL

Primitive
operat ions Remarks

X + y

x - y
x * y
x E y, x ~ y
x
a r b x

x i n c s y
x w i t h y

x l e s s y
{x,y }
[x,y]

Integer and real addition; set union; string and tuple
concatenat ion

Integer and real subtraction; set difference
Integer and real multiplication; set intersection
Membersh ip tests on sets and tuples
Cardinali ty of sets; length of tuples and strings
An arbitrary e lement selected from set x; the value of

a r b { } is the undefined atom, denoted ora
Boolean-valued test whe ther the set x includes the set y
Same as x + {y} when x is a set; same as x + [y] when x

is a tuple
Same as x - { y}
Set with specified e lements
Tuple with specified components

with each o ther and used as arguments to various " i terat ive" operations. We can
il lustrate i terators using the following most basic example, called a f o r a l l loop or
V-loop:

(Vx E s i x mod 2 = q)
block(x) (1)

e n d V;

T h e control s t ructure (1) performs an execution of "block" for each even
number contained in the set s. I t is implemented by a search through s in which
every value belonging to s is selected wi thout repet i t ion and stored into the
bound variable x. Each t ime tha t a new value is s tored in x, the predicate
x m o d 2 = 0 ~s executed; if the predicate is true, then the block is executed. Since
s is a set, the search th rough s is unordered. However, the f o r a l l loop (1) also
permits s to be a tuple, in which case the search through s would be ordered from
the first to the last component of the tuple.

f o r a l l loops can be used to implement various high-level expressions tha t
involve i terators. One such expression is the set former, which computes the
subset of a set satisfying a predicate• An example of this is

{x E s [x rood 2 # 0}, (2)

which computes the set of all odd elements of s. To compute the set of squares of
the odd e lements of s, we use the following var iant of (2):

{x2:x E s i x rood 2 # 0}.

S E T L also allows sets and tuples to be formed using range specifications• Thus,
[2 . . n - 1] computes a tuple whose first component is 2, second component is 3,
• . . , and whose last component is n - 1. The expression {1, 3 . . 11} computes all
the odd numbers be tween 1 and 11 inclusive.

S E T L includes bounded existential and universal quantifiers. To determine
whe ther a natural number n is prime, we can execute the universal quantifier

VjE [2 .. n - 1] [n m o d j # 0,

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 407

which will have the value t rue if no value j between 2 and n - 1 divides evenly
into n. If n is not prime, j will be assigned a value for which n ro o d j ~ 0 is false
as a side effect.

S E T L has three kinds of map retrieval operations:

1. f (a) denotes function application and computes the value of f a t a. If a does
not belong to the domain of f or if f is not single valued at a, the value of f (a) is
o m (ore denotes the undefined atom).

2. f { a } denotes the image set of {a} under f. If a does not belong to the
domain of f, the image set is { }.

3. f [S] denotes the image of the set S under f and is equivalent to
+ / { f (a) : a E S}.

Maps can be modified dynamically by indexed assignment. Th e operat ion
f (a) := o m removes the value a from the domain of f. Th e indexed assignment
f (a) := z is equivalent to

f(a) := ore;
fw i th := [a, z]; $ f(a) = z afterward

The image set of a mult ivalued map f at a domain point a can be modified by
the operat ions

f{a} +-:= delta; $ delta is a set (3)

o r

f{a) := s; $ s is a set (4)

where (4) is equivalent to

f(a) := ore; $ remove a from the domain o f f
(Vx ~ s)
f{a} with:= x; $ add the pair [a, x] to f

end V;

Note tha t n -parameter maps are also represented by sets of pairs each of whose
first component is an n-tuple. As a notat ional convenience, the map retrieval
t e rm f (x , y, z} can be used to abbreviate f([x, y, z]).

As in mathematics , S E T L uses copy value semantics.

3.2 Verification

To suppor t verification, we extend S E T L by allowing programs to be annota ted
with two statements ,

assume cond;

and

asser t cond;

where cond is any S E T L predicate. During execution, a s s u m e and a s s e r t
s ta tements are no-ops. However, whenever an a s s u m e or a s s e r t s ta tement is
encountered during execution, if the condition holds, we say tha t the encounter

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

408 R. Paige and S. Koenig

is satisfied. We say tha t an execution of a program is valid if

(1) whenever the execution includes an unsatisfied a s s e r t encounter, the first
such encounter is preceded by an unsatisfied a s s u m e encounter;

(2) whenever all a s s u m e encounters are satisfied, execution terminates normally.

A program is defined as valid if all of its possible executions are valid. The
domain of a valid program P is the set of input values tha t yield executions in
which every assumption encounter is satisfied.

In order to develop a suitable character izat ion of correct program transforma-
tions, we require tha t every program P include special ou tput assertions placed
at the normal exit points of P. A program transformat ion T is said to be validity
preserving if, whenever T maps a valid program P into a new program P ' = T (P) ,
T leaves the ou tpu t assertions of P intact and P ' is valid. A validity-preserving
program t ransformat ion T is said to be semantics preserving if, whenever T maps
a valid program P into a new program P ' = T (P) , the domain of P ' includes the
domain of p.1

I t is f requent ly useful to consider t ransformations applied to single-entry,
single-exit regions of code tha t we call blocks. Whenever the replacement of a
block B within a program P by another block B ' is validity (respectively,
semantics) preserving, we say tha t B ' preserves the validity (respectively, seman-
tics) of B within P.

One of the t ransformations to be discussed operates on a c h i e v e s ta tements

achieve E = f(xl x,);

t ha t have the same semantics as assignment s ta tements

E := f(xl x,);

3.3 Complexity

In order to demons t ra te tha t finite differencing results in program speedup, we
must utilize some measure of expected efficiency. Our heuristic complexity
measure is suppor ted by the most basic storage s t ructures implemented within
the run- t ime envi ronment of S E T L (cf. [18]). Sets are implemented by expandable
hash tables tha t permit a unit- t ime membership test and a l inear-t ime search
th rough all e lements of a set. Such an implementat ion also permits unit- t ime
e lement addit ion and deletion whenever these operations can be performed
direct ly on the body of a set wi thout copying. Maps are implemented using a
similar hash table for storing their domains, and range elements are accessed
rapidly via thei r corresponding domain elements. This permits various kinds of
functional application and change to be done in t ime proport ional to a map's
arity, and permits i terat ion through a map's domain to be done in l inear time.

On the basis of the preceding measure, it is easy to verify the t ime est imates
shown in Table II for set theoret ic operations.

3.4 Miscellaneous Definitions

In order to discuss the notion of finite differencing systematically, it is convenient
to introduce some definitions and notat ional devices tha t we have borrowed (with

1 For a more comprehensive study of transformational correctness, see [4, 5].

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 409

Table II. Complexi ty of S E T L Operat ions

Opera t ion Es t ima ted cost

s w i t h : = x; O(1) a
s l e s s : = x; O(1) a
x ~ s O(1)
s + := delta; O(#del ta) a
f (x) := y; O(1)"
f (x l x .) O(n)
(Vx E s) 1

Block(x)~ O(#s x cost(Block))
end V; J
{x ~ s lk(x) } O(#s x cost(k))
3x E s I k(x) O(#s x cost(k))
Vx E s lk(x) O(#s x cost(k))
s + t O(#s + #t)
f[s] O(#{[x, y] ~ f i x e s})

a These es t ima tes hold when set copy opera-
t ions are avoided.

slight modifications) f rom program optimization l i terature (for which see [1, 2,
10, 23, 25]}. We sometimes use the mathemat ical function notat ion

C = f (x l x ,)

to uniquely associate a text expression f involving n distinct free variables xl,
. . . . x , with a variable C (which we call the v i r tua l variable associated with f).
We assume that , whenever f is executed, its value, calculated from the values of
its free variables X l , . . . , x , and constants, is placed in C. We also assume tha t f
and all of its subexpressions are appl icat ive; tha t is, f behaves like a finite map.

We say tha t C is ava i lab le on exi t from a program point p if C is equal to the
value tha t the expression f would have if evaluated immediately after the
s ta tement at p is executed; C is ava i lab le on en t rance to p if C is available on exit
f rom all predecessor points o fp . If C is available on entrance to p, and if C is not
available on exit from p (which will happen when execution of the s ta tement at
p changes the value of a parameter xi upon which the value of f depends), then
we say tha t C is spoi led at p. If C is available on entrance to a program point p
at which there is an occurrence of a retrieval expression f, we say tha t the
occurrence of f i s r e d u n d a n t at p. When this is the case, program semantics will
be preserved by replacing the occurrence o f f by the variable C. (Such replacement
is commonly called r e d u n d a n t code e l iminat ion .)

Expression f is wel l de f ined at a program point p if, for every valid execution
tha t passes through p and satisfies every assumption encounter prior to p, the
values of xl Xn at the point p belong to the domain of f.

A contro l f low p a t h is a sequence of program points representing a logical
sequence of primitive operations tha t might be performed, under the assumption
that , every t ime a predicate Q is encountered during execution, the value of Q is
in terpre ted as being ei ther t rue or false.

Within the text of a program we distinguish between two kinds of variable
occurrences: uses and def ini t ions . A use of a variable v is an occurrence at which
the value of v is re t r ieved but not modified. A definition of v is an occurrence in

ACM Transactions on Programming Languages and Systems, Vol. 4, No, 3, July 1982.

410 R. Paige and S. Koenig

which v is modified, as, for example, at the left of an assignment statement, within
a r e a d statement, and as the bound variable of an iterator. We say that a
definition d of a variable v reaches a program point p if there exists a control flow
path from d to p that contains no definitions to v other than d. A use u of a
variable v is live at a program point p if there exists a control flow path from p to
u that is free of definitions to v.

On the basis of "reaches" and "live" relations, we can construct the two
standard data flow maps, u s e t o d e f and deftouse, which have the following
meaning. If d is a definition to a variable v, then def touse {d} is the set of uses of
v reached by d; if u is a use of v, then u s e t o d e f { u } is the set of definitions to v
that reach u. In Section 5 we show how to use the data flow maps to perform
dead-code e l imina t ion , a semantics-preserving transformation that eliminates
code not contributing either directly or indirectly to the value of any program
variables used within pr in t , sequential read , assume, and a s se r t statements.

4. FINITE DIFFERENCING OF APPLICATIVE EXPRESSIONS

4.1 Basic Concepts

In [10] reduction in strength (which we call finite differencing) is viewed as an
extension of code motion whereby the major cost of evaluating an expression

E = f (x l , Xn)

is moved outside a program region R despite modifications to its parameters xl,
. . . . Xn occurring within R. The basic idea of this technique can be expressed as
follows: by making E available on entry to R (by evaluating f and storing its
value in E immediately prior to R), and keeping E available within R (by
appropriately modifying E each time one of the parameters Xl x, is modified),
we can avoid full calculations of fwi thin R (by replacing redundant occurrences
of f within R by the variable E). For this approach to be useful, the cost of
keeping E available in R must be less than the cost of calculating f anew each
time it is referenced.

We formulate finite differencing in terms of a small but powerful collection of
semantics-preserving program transformations that generalize the three separate
tasks implied by Cocke's schema just above.

1. The Init transformation Ini t (P) replaces each contiguous sequence of
ach i eve statements

achieve E = f(x~ x,);

within a program P by a code block B that computes and stores the values of the
expressions f (x l x ,) into their respective virtual variables E.

2. The Differential transformation, denoted O J (R) , inserts code within a
program region R in order to keep each expression E = f(x~ x ,) belonging
to a sequence of expressions J available at points in R after which redundant
uses of f(x~ , Xn) are replaced by E.

3. Clean is a transformation that eliminates dead code; it is the last step of
finite differencing.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 411

Although we only illustrate finite differencing for SETL, this me thod can be
extended to o ther procedural languages tha t have a rich supply of applicative
expressions.

4.2 The Differential Operator and the Chain Rule

Since the Differential t ransformation is fundamental to finite differencing, a
comprehensive description of this t ransformation is essential to an understanding
of the example of algori thm derivation by finite differencing given in Section 5.
However, in order to move as rapidly as possible toward this full case study, we
postpone a full specification of the ancillary transformations, Init and Clean, until
Sect ion 6.

In this section we formally specify the differential with respect to a single
applicative expression and a single-entry, single-exit code block and prove tha t it
is a semantics-preserving program transformation. Next, we extend the differen-
tial so tha t it can be applied to sequences of expressions by means of a "chain
rule." Finally, we state conditions under which the differential may be expected
to improve the running t ime of programs.

Recall that , in calculus, the differential operator uses the value of a function
y = f (x) and its derivative at a point Xold to obtain an approximate value of f at
a new domain point Xnew tha t lies a "slight" distance away from Xo~d. Our
differential program transformat ion serves a purpose similar to tha t of its coun-
t e rpar t in calculus, and is defined in terms of analogous components. These
components include

(1) an applicative expression E = f (x l x ,) where E is a variable uniquely
associated with the value of f (x l Xn);

(2) a single-entry, single-exit code block B tha t can modify the values of the
variables x l , . . . , Xn on which E depends;

(3) a computable "derivat ive" tha t allows us to determine the new value Enew of
E from its old value Eold when the old value is spoiled by an assignment dxi
to a variable xi on which E depends.

T h e computable der iva t i ve is defined formally as follows:

Def in i t i on 1. Le t E = f (xl , . . . , x ,) be an applicative expression tha t depends
on the variables xl , x~, and let dxi be an assignment to the variable xi. The
code block pair [B1, Be] is said to be a derivative of E with respect to dxi if

(1) the only variables modified by B1 or B2 are E and variables local to B1 and
B2; and

(2) the code block

achieve E = f(xl x,);
B1
dxl
B2
asser t E = f(xl Xn)

preserves the semantics of dx~ and contains only redundant uses of
f (x~ x .) .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

412 • R. Paige and S. Koenig

/ f

Note that , when no uses of E within the derivative code (either B1 or B2) are live
on entry to B1, we can omit the a c h i e v e s ta tement in the code block above, in
which case we say tha t [B1, B2] is a strong derivative.

Whenever [B1, B2] is a derivative of E with respect to dxi, we say tha t B1 is a
prederivative of E with respect to dxi and tha t B2 is a corresponding post-
derivative of E with respect to dxi, for which we write

B1 = O-E (dxi)

and

B2 = O + E (dxi) ,

respectively. Note tha t occurrences of the variable xi within BI refer to the old
value of xi prior to the change d x , while occurrences of x~ within B2 refer to the
new value.

Note tha t the derivative code is not unique, and it can always be defined for an
applicative expression E -- f (x l , . . . , x ,) relative to pa ramete r modifications using
an empty prederivat ive and a postderivative tha t evaluates f (x l , . . . , x ,) from
"scra tch" (i.e., wi thout reference to the old value of f s t o r e d in E) and stores this
value into E. Also, if the variable x~ modified by an assignment dx~ is not among
the free variables xl x , , the derivative of E with respect to dx~ is empty.

To illustrate derivatives further, consider the set former

E = (x E A] x m o d 2 = 0 } (5)

where A is a set of integers. A derivative of E with respect to the s ta tement

A with:= i;

is given by the empty postderivat ive and the computat ional ly inexpensive pre-
derivative

if i rood 2 = 0 then
E with:= i; (6)

e n d if;

A strong derivative of E with respect to the s ta tement

A : = { } ;

is given by the empty postderivat ive and the prederivative

E := { }; (7)

In practice, expression (5) and derivatives (6) and (7) would be par t of a finite
collection of basic applicative expressions tha t we call Forms and associated
derivative rules tha t we call Derivs. We represent a derivative rule as a quadruple

[E = f (x l x~), dxi, O-E (dx~), O+E (dx~)] (8)

associating a basic expression belonging to Forms and a pa ramete r modification
dxi with a unique pre- and postderivative pair. Although Derivs only contains a
finite number of rules, each rule (8) represents an equivalence class of rules
formed from (8) by substi tut ing n distinct variables for the parameters Xl, . . . ,

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions • 413

Xn. (We call such substitutions d-substitutions.) Thus, Derivs gives rise to
derivative rules for all expressions transformed by parameter d-substitutions of
the basic expressions belonging to Forms; we call these expressions elementary
expressions. To ensure that no more than one derivative rule is applicable for a
given elementary expression and parameter modification, we require that no
expression belonging to Forms can be transformed by d-substitutions into a
subexpression of any other expression belonging to Forms.

On the basis of the two sets Forms and Derivs, we can proceed to specify the
differential fully.

Definition 2. Consider an applicative expression E = f (x l , . . . , Xn) that is well
defined within a single-entry, single-exit code block B occurring in a valid program
P. Suppose that no uses of E in P are live within B. Suppose, also, that within
our collection Derivs of derivative rules are rules giving derivatives for E with
respect to every assignment dxi occurring in B to a variable xi on which E
depends. Suppose, finally, that, if f is not well defined on entry to B, the first
statement of B is an update statement with respect to which the derivative of E
is a strong derivative. Then E is said to be differentiable with respect to B. The
differential of E with respect to B, denoted OF, (B) , is a new code block formed
from B in the following way:

1. Derivative Code Insertion. Replace each statement dxi that modifies a
variable xi on which E depends by

O-E (dxi)
dxi
O+E (dxi)

2. Redundant Code Elimination. Replace all uses of f (xl Xn) within the
code block that results from step 2 with uses of the variable E.

We illustrate the differential using the applicative expression (5), differer~tiable
with respect to the following code block:

a:-- {};
(while eof = false)

read(i); (9)
a with:= i;

end while;
print({x E a lx rood 2 = 0});

This code reads a sequence of integers and prints the set of even integers in the
sequence. The differential of E with respect to code block (9) can be expressed
with our operator notation as

OE(a :-- { };
(while eof = false)

read(i); (10)
a with:= i;

end while;
print({x ~ alx rood 2 = 0});)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

414 R. Paige and S. Koenig

I f we temporar i ly neglect the redundant -express ion el imination task of the
differential operator , code block (10) can be wri t ten more concretely as

O - E (a := {);)
a:---- {};
(while eof = fa l se)

read(i); (11)
O - E (a with:= i;)
a with:= i;

end while;
print({x E a l x mod 2 = 0});

Since (11) resul ts f rom insert ing dead code into (9), (11) is semant ica l ly
equivalent to (9). By definit ion of the derivative, we can t r ans form (11) into the
following equivalent code:

E : = {};
a:---- {};
a s s e r t E = { x E a l x m o d 2 = 0 } ;
(while eof = fa l se)

read(i);
ach ieve E = {x E a] x rood 2 = 0};
i f i rood 2 = 0 then (12)

E with:= i;
end if;
a with:-- i;
a s s e r t E = { x E a l x m o d 2 = 0 } ;

end while;
print({x E a I x rood 2 = 0});

By using a par t ia l -correctness inference sys tem similar to Hoare ' s [24] and
based on G e r h a r t [20] and Schwartz [38], we can p ropaga te assert ions th roughou t
(12) and el iminate r edundan t a c h i e v e s t a t emen t s to obta in the following code:

E : = (};
a : = {};
a s s e r t E = { x E a l x m o d 2 = 0 } ;
(while eof = fa l se)

a s s e r t E = { x E a l x m o d 2 = 0 } ;
read(i);
a s s e r t E - - { x E a l x m o d 2 = 0 } ;
if i m o d 2 = 0 then

a s se r t E = {x E a I x mod 2 = 0}; (13)
E with:--- i;

end if;
a with:= i;
a s s e r t E = { x E a l x m o d 2 = 0 } ;

end while;
a s s e r t E - - { x E a l x m o d 2 = 0 } ;
print ({x E a I x m o d 2 = 0});
a s s e r t E = { x E a l x m o d 2 = 0 } ;

Note finally t ha t the use of {x E a Ix m o d 2 -- 0} within the p r i n t s t a t emen t
of (13) is r edundan t and can be replaced by the var iable E.

T h e a rgumen t used to prove tha t (13) preserves the semant ics of (9) m a y be
generalized to prove the following theorem, which formal ly justifies the correct-
ness of the differential operator .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable ExpresSions 415

THEOREM 1. Let E -= f (x l x,) be an applicative expression that is
• ? . ' .

differentiable with respect to a code block B (occurring wtthm a valid program
P). Then, if any use of E occurring within OE (B) is live o[t entry to OE (B), the
code block

achieve E = f(xl Xn);
RE(B)

preserves the semantics of B; otherwise, aE iB) presenfes the semantics of B.
Furthermore, E is available on exit from OE (B).

PROOF. The proof follows from the fact tha t the differential Can be defined in
te rms of semantics-preserving transformations. Wi thout loss Of generality, sup-
pose tha t there is a use of E within 8E (B) tha t is live on ent ry to a E (B). T h e n
it mus t be the case tha t f is well defined on ent ry to B. Since E is not live on
ent ry to B, insertion of

achieve E = f(xi x,);

on ent ry to B is a semantics preserving dead-code insertion transformation. By
definition of derivatives, replacing each modification dxi to a variable xi on which
E depends by

achieve E = f(xl x,); 2
O-E (dxi)
dxi (14)
O+E (dxi)
a s s e r t E = f(xl x .) ;

is also semantics preserving. Since, by def'mition of derivatives, all uses of
f (x l X,) occurring within (14) are redundant , replacement of such uses (in
code o ther than a c h i e v e or a s s e r t s tatements) by uses of E is semantics
preserving. A simple inductive argument can be Used to show tha t propagat ion of
the assertion E = f (x l Xn) will justify elimination of all a c h i e v e s ta tements
inserted within the derivative blocks (14) as redundant . A similar argument can
be used to show tha t all remaining uses of f (x l , . . . , Xn) (outside of the a c h i e v e
s ta tement inserted just prior to B) are redundant and can be replaced by uses of
E. Moreover , E will be available on exit f rom OE (B). []

COROLLARY 1.1 The differential transformation is a linear operator with
respect to sequential blocks; that is, OE (B~ B2) = OE (Bi) OE (B2).

Suppose tha t f (x) and g(y) are elementary expressions, tha t E1 = f (x) is
differentiable with respect to dx, and tha t E2 = g (E~) is differentiable with respect
to modifications to E1 within the block OEI (dx). Th e following nested application
of the differential indicates tha t the expression g(f(x)) is also differentiable with
respect to dx:

OE2(OEl(dx)) = OE2(O-E~(dx))
O-E2(dx)
dx
O+E2(dx)
OE2(O+E~(dx)).

2 The a c h i e v e s ta tement is omitted for strong derivatives.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

416 R. Paige and S. Koenig

This observation allows us to extend our class of differentiable expressions to
"nonelementary" expressions formed by composition of elementary expressions
and parameter d-substitutions. More generally, the following definition and
theorem show how to differentiate collections of expressions using a chain rule.

Defini t ion 3. Consider n elementary expressions E1 = fl En = f , and a
single-entry, single-exit code block B occurring in a valid program P. Suppose
that E1 is differentiable with respect to B, that E2 is differentiable with respect to
OEI(B) and that En is differentiable with respect to O E , - I (. . . (OE~(B))
• . .). Suppose also that i > j implies that fj does not involve the variable Ei (i.e.,
f~ , fn preserve an inner-to-outer subexpression ordering). Then the list of
virtual variables E E1 is said to form a dif ferent iable chain, and the
extended differential of this chain with respect to B is defined recursively by the
following "chain rule":

OE,, En-1 , E~(B) = OF,,, En-1 E 2 (O E d B)). (15)

It is important to further restrict the chain ordering (15) to prevent derivative
code for Ei from introducing any expression/~, j < i, since such an occurrence of
/~ might not be eliminated as redundant within the extended differential (15).

THEOREM 2 (C~AIN RULE). Let E , = f , , E~ = f~ be a chain o f n appl icat ive
express ions di f ferent iable wi th respect to a code block B occurring wi th in a
va l id p r o g r a m P. Le t S be the set o f indices i = 1 . . n for which there are uses
o f Ei wi th in B ' = OE , E ~ (B) live on entry to B ' . Then the code block

achieve Ales Ei = fi;
aE E l (B)

preserves the semant i c s o f B a n d keeps E~ , E , avai lable on exit. Further-
more, i f g is any express ion f o r m e d f rom some fj, j = 1 . . n, by subs t i tu t ing fi for
Ei, i = 1 . . j - 1, then any use o f g occurring wi th in B or in t roduced wi th in
der ivat ive code by the chain rule wi l l be m a d e r e d u n d a n t a n d replaced by Ej
wi th in aE E~ (B) .

PROOF. Using Theorem 1 and the definition of differentiable chains (and
especially taking account of the ordering of chains), the theorem follows easily
from induction on the number of expressions in the differentiable chain. []

COROLLARY 2.1 The ex t ended di f ferent ial is a l inear operator wi th respect to
sequent ia l code blocks; tha t is,

OE , E , (B , B2} = 8E , E~(B,) OE~, . . . , El(B2}.

To illustrate the chain rule, we consider two abstract elementary expressions
f (x) and g(x , y) that are differentiable with respect to various modifications to
their parameters. The following three cases demonstrate how "nonelementary"
expressions formed from f and g by composition and parameter substitution are
also differentiable:

h(x , y) = g (f (x) , y) is seen to be differentiable by applying the chain rule to
E , = f (x) and E2 = g(E~, y);

s (y) = g (f (y) , y) is handled similarly by using the chain rule on E1 = f (y)
and E2 = g(E1, y);

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 417

t (x) = g (x , x) is also differentiable since the identity expression
E1 = x is differentiable; just apply the chain rule to E1 and
to E2 = g(E1, x).

The chain rule leads to a calculus of computable derivatives for collections of
differentiable expressions based on the following three rules:

OE E l (d x) = O-En El(dX)
dx
o+E E~<dx);

O-E E,<dx) = OE, E2(O-E, (dx))
O-E E2(dx)~

O+E , E , (d x) = O+E, , E2(dx)
O E E2(O+E,(dx)).

4.3 Speedup

In order for finite differencing to improve program perforinance, the overall
computational cost of calculating derivative code in a differentiated program
must be less than the cost of calculating differentiable expressions in an unopti-
mized program. Such improvement will only be possible if differentiation is
restricted to those expressions f relative to code blocks B for which

(1) each derivative code block for f is computationaUy less expensive than the
cost of a fresh recalculation of f; and

(2) within B, the number of times in which a modification to an argument of f is
executed relative to each time that f is executed is reasonably small.

Ever since Cocke's original formulation of automatic strength reductiori [10],
the various approaches to finite differencing have satisfied condition (1) a priori
for all derivative rules, and have satisfied condition (2) using control and data
flow analysis to constrain the regions B where differentiation can be applied.
Cocke, Allen, Kennedy, Schwartz, and Markstein [3, 8=i0] have presented deriv-
ative rules for various elementary numerical expressions (e.g., for replacing costl3t
products and quotients by less expensive additions and for replacing exponentia-
tions by less costly products). Cocke and Schwartz used different program analysis
techniques based on linear nested regions and on intervals to restrict differentia-
tion to those expressions f occurring in loops L (i.e.~ single-entry, strongly
connected regions) in which no proper subloop could contain any modifications
to any arguments of f without also containing f [10, pp. 408-462]. We call this
restriction the boundedness requirement , because it implies that every control
flow cycle within L contains a bounded number of modifications to arguments of
f On the basis of the assumption that execution frequency of code occurring
within program loops is greater than that of code occurring in regions immediately
containing these loops, they were able to expect a constant-factor speedup. They
recognized that differentiated code might not be "safe" but did not find a
reasonable solution other than avoiding differentiation of quotients (for which
division by zero is a serious problem) in favor of products (for which the problem
of overflow can be accepted as a necessary evil).

Profitable successive differentiation of assorted set expressions was first dis-
cussed informally by Earley [13], who presented examples that exhibited order-

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

418 R. Paige and S. Koenig

of-magnitude speedup. Earley's ingenious technique of"iterator inversion" rested
on highly efficient set theoretic derivative rules. For example, he gave derivatives
for set formers {x E s l k (x) } with various kinds of predicates k, and for quantifiers
3 x E s Ik(x) and V x E s I k (x) . However, he lacked a general method of combining
these rules and did not elaborate on special control flow considerations for
recognizing contexts where profitable differentiation was ensured.

An implementation design for the differentiation of "nonelementary" set
expressions with respect to program loops that satisfied the boundedness require-
ment was first given serious treatment by Fong and Ullman [16, 17], who
considered differentiable expressions built up from set union, intersection, and
difference, as well as certain kinds of set formers. Fong and Ullman adapted
several of Earley's efficient derivative rules and developed a theoretical charac-
terization of conditions under which their method would yield asymptotic
speedup. Their method differed from previous work in that derivative code to
maintain the availability of expressions was deferred to the point at which the
expressions were used instead of at points where arguments of these expressions
were modified.

Their deferred differencing approach is based on the following idea. Let
E = f (A) be a set-valued expression involving a set argument A and occurring at
a program point p in a program loop L. Let A,ew and Ao~a represent the new and
old values of A between any two consecutive times that control reaches p along
any path contained within L. To differentiate E, two auxiliary sets d + = A n e w -

Aola and d - = Aola - Anew must be maintained by updating them whenever A is
modified along each cycle within L containing p. Then, at point p, d ÷ and d - are
used to update E (so that E = f(A)) and are reassigned to the empty set.

Among many other results Fong and Ullman proved were general conditions
under which differentiation of set formers (x E A [k(x)} and quantifiers
3x E A [k(x) and Vx E A [k (x) would result in asymptotic speedup; that is, after
differentiation, these expressions could be maintained with work proportional to
#.4 + cost(k(x)} instead of the straightforward #,4 × cost(k(x)) [15, 17].

Using a different program analysis technique than Cocke, Allen, et al., Fong
presented implementation algorithms for reducible programs that could detect
differentiable expressions within loops satisfying the boundedness requirement
[16]. Improvements to her algorithms have since been presented by Rosen [36]
and Tarjan [46].

In contrast to the theoretical approach of Fong and Ullman, Paige and Schwartz
initiated a pragmatic investigation of Earley's "iterator inversion" by generalizing
Earley's transformations and stating pragmatic rules for the discovery and
treatment of reasonably general cases in which their technique could be applied
[35]. On the basis of this study, Paige developed a finite difference method [33,
pp. 71-89] that generalized both strength reduction and iterator inversion within
a unified framework. He presented an extensive collection of new, efficient set
theoretic derivative rules (some of which are reformulated in Appendix B) and
stressed application of these rules to algorithm derivations. Like Cocke, Allen, et
al., Paige mainly treated differencing as a loop optimization, in which efficient set
theoretic derivatives and the loop boundedness requirement promised speedup
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 419

under the standard assumption that code is executed more frequently inside loops
than outside.

Further development of the differencing mechanism found in [33] has led to
the chain rule (Theorem 2), which gives rise to a calculus of computable deriva-
tives for handling more general classes of expressions belonging to a variety of
data types (in addition to set expressions) than before. In this section, we analyze
the chain rule and the attendant speedup that our finite difference method yields.
We emphasize set theoretic illustrations of profitable derivative rules and state
conditions under which application of these and other rules (presented in Appen-
dix B) can yield asymptotic speedup.

However, before presenting examples of efficient derivative rules for set expres-
sions, it is useful to state a few guiding principles. The computational cost of
derivative code for a set-valued expression E = f (x l Xn) depends on the
overall cost of executing set unions and deletions

E +_:= delta; (16)

We can minimize these costs by ensuring that the modifications (16) represent
disjoint unions and subset deletions. It is also worthwhile to define derivatives for
E with respect to changes in set-valued parameters xi only when the modifications
xi - : = eps to xi also represent disjoint unions and subset deletions. In this way,
we can prevent the chain rule from propagating unnecessary computations.

It is convenient to further regularize our treatment of set modifications by
expressing these modifications in terms of element additions s with:= z and
deletions s less:= z for which the respective preconditions z ~ s and z ~ s hold.
We call these specialized element operations s t r i c t and assume that throughout
this paper all occurrences of element additions and deletions are strict operations.
This poses no undue restrictions, since any program can be preprocessed by
turning set additions and deletions into repeated element operations that can
then be rewritten as strict operations.

Using the measure of computational cost described in Table II, we can observe
a variety of set theoretic expressions for which differentiation could be profitable.
The set union E1 = S + T is differentiable with respect to an element addition,
S wi th := y, and element deletion, S less:= y, since the prederivative code blocks

if y ~ T then $ for S with:= y
El with:= y; (17)

end if;

and

ify ~ T then $ for S less:= y
E1 less:= y;

end if;

take unit time, while computing the full union can be expected to cost
O (# S ÷ # T) units of time.

Another differentiable set theoretic expression is the set former

E2 = (x E S I K (x) }

in which S does not occur free within K. The prederivatives for E2 relative to the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

420 R. Paige and S. Koenig

changes S w i t h : = y and S less := y are

if K(y) then
E2 with:= y;

end if;

and

if K(y) then
E2 less:= y;

end if;

(18)

respectively. Note tha t (18) requires O(1) elementary steps to compute.
The set cardinality expression E3 - # S is also differentiable with respect to

S w i t h : = y and S less := y. The prederivatives O-E3(S with:-- y;) and
O-E3(S less := y;) are

E3 - := 1; (19)

As was observed in Section 4.2, profitable differentiation of a nonelementary
expression is supported by differentiation of its subexpressions according to the
chain rule. As an example of this, consider

E3 = # { x ~ (S + T) I K(x)}

where S and T do not occur free within K. In order to differentiate E3 with respect
to element additions S w i t h : = y (for arbitrary values of y), we must first
decompose E3 into its e lementary subexpressions,

E1 = S + T;

E2 = {x E E1 I K(x)};

E3 = #E2.

Using derivative rules (17)-(19) and the chain rule, we compute the differential
aE3, E2, EI(S w i t h : = y;) according to the following steps:

0E3, E2, El(S with:= y;) --* 0E3, E2(if y ~ T then
E1 with:= y;

end if;
S with:= y;)

--* aE3(ify ~ T then
i f K(y) then

E2 with:= y;
end if;

end if;
S with:= y;)

--. i fy ~ T then
if K(y) then

E3 +:= 1;
E2 with:-- y; (20)

end if;
end if;
S with:= y;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 421

Observe that the outermost i f statement within (20) forms the extended
prederivative a-E3, E2, El(S with:-- y;), whose cost is determined by summing
the constant-factor costs of the prederivative rules for El, E2, and E3. Thus,
calculating E~ differentially by (20) represents a considerable speedup over a
straightforward calculation of E3 by three separate assignments

E1 := S + T;
E2 :-- {x E E1] K(x)}; (21)
E3 := #E2;

Note finally that the incremental approach (20) results in greater data and
operational independence than (21). Consequently, there can be more dead code
and more opportunity for parallel execution occurring in (20) than (21). In this
example, it may be possible to eliminate all assignments to E1 and E2 within (20)
as dead.

Profitable differentiation of an expression f can sometimes be supported by
differentiating f together with a chain of auxiliary expressions (as in Briggs's first,
second, . . , difference polynomials discussed in Section 2). Thus, the prederivative
a-E(x +:= delta;) of the nth degree polynomial E = P(x) is

E +:= Pl(x)

where Pl(X) is the first difference polynomial. However, for the prederivative
code above to be inexpensive, we must also differentiate the second, third, . . . ,
n th difference polynomials, denoted Ei = Pi(x), i = 2 .. n. To realize Briggs's
efficient technique, we consider the extended prederivative (of expressions or-
dered carefully into a "differentiable chain") a-En-1 , El, E (x +:= delta;)
that expands into

E +:= El ;

E1 +:= E2;

En-1 + : = En;

The preceding example, with its use of auxiliary expressions, has interesting
analogues among set theoretic expressions. Consider the image set

E = {e(x) : x E s} (22)

where s does not occur free in the subexpression e. When e behaves like a one-to-
one map, the prederivatives a-E(s with:= z) and O-E(s less:= z) are given by

E with:= e(z);

and

E less := e(z);

An important subcase of (22) is the set former

E ' = {[e(x), x] : x E s}, (23)

which represents the restriction of e -1 on its range to s (observe that [e(x), x] is
one-to-one). The inverse map (23) can be used as an auxiliary expression to

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

422 R. Paige and S. Koenig

differentiate (22) even when e is not one-to-one. To see this, consider the case
when e is many-to-one. Then a - E (s with:= z;) is

if #{x E s [e(x) = e(z)} = 0 t h e n
E with:= e(z); (24)

end if;

and a - E (s less:= z;) is

i f # (x E s le(x) = e(z)} = 1 t h e n
E less:= e(z); (25)

e n d if;

However, (24) and (25) do not represent efficient derivatives, because they
contain occurrences of the costly set former

E l = {x ~ s l e (x) = e(z)}.

Moreover, any hope of differentiating E1 together with E, as Briggs did with his
difference polynomials, would seem unfeasible, because E1 is not directly differ-
entiable with respect to arbitrary modifications to z. However, from (23) we know
that E ' { e (z) } = E l , so that differentiation of E ' will keep E~ available regardless
of how z is modified. Differentiation of E ' together with E will be profitable,
since the extended differential a -E ' , E (s with:= z;), for example, is just

if #E ' {e (z) } = 0 then
E with:= e(z);

e n d if;
E' with:= [e(z), z];

which executes in O(1) steps. The computational cost of O-E' , E (s less:= z;) is
also O(1).

Of course, it is important to bound the number of auxiliary expressions that
must be differentiated to differentiate each elementary expression. In Appendix
B, we present a variety of elementary expressions that require further differen-
tiation of costly subexpressions introduced within derivative code (these costly
subexpressions are underlined). However, in the worst case only three additional
auxiliary expressions must be differentiated (see Rule E2 of Appendix B).

Our method of handling E~ by differentiation of the auxiliary expression E '
illustrates a general technique (called "discontinuity removal" in [33, pp. 7,
91-107, 155-157]) based on Earley's technique of iterator inversion [13] for
handling expressions that are not directly differentiable with respect to changes
in some of their parameters. The basic idea is captured in the following obser-
vation about the example just presented: the set De,z) = {e(y) : y E s} includes all
values of e(z) for which the set E~ = {x E s I e(x) = e(z)} is nonempty. Conse-
quently, we can store all the significant values of E~ corresponding to each value
c --- e(z) belonging to De<z) within the expression

E " = {[c, x] : c E De,z), x E {w E s l e(w) = c}}.

Since E " computes the same set as the computationally more efficient differen-
tiable expression E ' , we can keep all potentially nonempty expressions E1 =
E ' { e (z) } available by profitable differentiation. More generally, whenever an
expression E3 -- f (x l , . . . , Xn, q) is not directly differentiable with respect to

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 423

modifications to a parameter q, we can often profitably differentiate a simplified
variant of another expression E4 = {[c, f (x l , x , , c)] : c E Da} where Dq is a
set of all q values outside of which E will be equal to some constant (such as the
empty set). For additional examples of this technique, see Appendix B, Rules C1,
C2, D2, E2, and H2.

We have already observed that the set formers

E~ = {x ~ s l k (x) }

and

E2 = {e (x) :x E s}

are differentiable with respect to changes in s. More interestingly, these expres-
sions are even differentiable relative to indexed assignments

f (y) := z; (26)

to dynamic maps f that appear only as retrievals occurring within k and e, and
when each such retrieval depends on x. Presentation of these derivative rules
also illustrates the importance of postderivatives.

In the case of El, let all of the distinguishable f retrieval terms occurring within
k be denoted

f (p l (x)) , f(pr(X))

where pi(x) represents the argument expression of the ith retrieval term. We
note, f'wst of all, that the set

E3 = {x E s l y E {pl(x) , . . . ,pr (x)}}

contains all those elements of s for which the value of the Boolean subpart k(x)
occurring within E1 can change from true to false or from false to true as a result
of the indexed assignment (26). We refer to E3 as the "tunnel set" of E1 with
respect to (26) and use it in the following lemmas to derive a derivative rule
for El.

LEMMA 1. E3 is not spoiled by (26).

PROOF. Let d be the maximum depth of nesting of f terms contained within
other f terms occurring within an expression e (e.g., the f depth of the term
f (g (f (x + f(0)))) is 3). Let w belong to E3 just prior to the change (26). Then w
belongs to s, and y = pk(w) for some k = 1 . . r. If we choose this k such that
pk(w) has a minimal f depth, then y must equal pk(w) after (26) is executed. For
otherwise, an f term f (p j (w)) occurring within pk(w) would be spoiled by the
assignment (26). And this implies that, for some i different from k, pi(w) equals
y prior to (26) and has smaller f depth than pk(w)--a contradiction. []

LEMMA 2. The fol lowing code block can be used to represent the differential
OE~(f(y) := z;):

O-EI(s -:-- {x ~ s l y ~ {pl(x) pr(X)}};)
f(y) := Z; (27)
O-E,(s +:= {x ~ s l y E {p,(x) pr(x)}};)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

424 • R Paige and S Koenig

PROOF. Follows immediately from Lemma 1. []

Because the set former

E3 -- {x E s l Y E {pl (x) , . . . , pr(X)}}

appearing in (27) requires O (# s × cost(k)) steps to compute (which is the same
as the cost of a full calculation of El), the differential code (27) does not look
promising. Furthermore, because the value of y used in (27) is not predictable, it
appears at first glance that a full calculation of E3 (which is not differentiable
with respect to modifications of y) cannot be easily avoided within (27). Fortu-
nately, however, we can make all full calculations of E3 redundant within (27) (so
that these calculations can be eliminated) by maintaining the auxiliary expression

Ao = {[w, x] :x E s, w E { p l (x) , . . . , pr(X)}}

differentially (note that Ao{y} equals E3(y) for all y). Lemma 3, below, gives
conditions under which Ao will be differentiable with respect to indexed assign-
ments (26) and supports Theorem 3, which asserts that the differential
aE1, Ao(f(y) := z;) can be performed efficiently.

LEMMA 3. W h e n e v e r # { x E s lp i (x) = Y} = O(1) for i = 1 . . r a n d al l y,
3 n > 0 such tha t the set former

Ao = {[w, x] : x E s, w E {p l (x) pr(X) } }

is di f ferent iable relat ive to modi f icat ions o f the form s with:-- z, s less:= z, a n d
f(y) :-- z for al l values # s > n.

PROOF. By easy generalization of the derivative rules (18), we see that

O-Ao(s with:ffi z;) = (Yw E (pl(z) pr(z)})
A0{w} with:= z;

end V;

and

O-Ao(s less:--z;) = (Vw E {pl(z) pr(z)})
A0{w} less:= z;

end V;

in which both of the derivative code blocks above require O(r + cost(k)) steps to
execute (where k is the Boolean-valued subpart of the expression El).

To handle OAo(f(y) :-- z;), we first note that the expression Ao is formed from
E1 in such a way that, for every retrieval term f (p (x)) occurring within the
subexpressions pi(x), i ffi 1 . . r, of Ao, there exists some j, j = 1 . . r, for which the
terms p(x) and pj(x) are identical. Among other things, this implies that, when r
equals 1, the expression

Ao ffi {[w, x] : x E s, w E {pl(x)}}

has an f depth of 0. Otherwise, if f (p (x)) were a term occurring within p~(x), the
terms p(x) and pl (x) would be identical; and this is clearly impossible.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 425

Let t(r) be an upper bound on the est imated cost of computing the differential
O.40(f(y) := z;) . By preceding remarks, when r equals 1, Ao does not involve f, so
tha t the derivative of Ao with respect to (26) is empty and t(1) = 0. Also, when A0
has f depth 0, t(r) = 0 for any r.

To determine t(r) for the case when r > 0 and Ao has an f depth d > 0, we first
suppose tha t the distinguishable f terms occurring within Ao are f (p~(x)) ,
f (p q (x)). By a minor extension of Lemma 2, the differential OAo(f (y) := z;) can
be realized by

O-Ao{s - := (x E s l y E (p,(x) pr,(x))})
f (y) := z; (28)
O-Ao(s +:= {x E s l y E (pl(x) pr,(x)}})

Since (by Lemma 1) the two tunnel sets Ao (y) and

E~ = (x E s l y e (pl(x) , . . . , pr, (X)) }

are not spoiled by (26), and since E3 is contained in Ao (y}, the differential code
(28) can be rewri t ten

O-Ao(s -:= Ao (y};)
f (y) := z;
O-Ao(s +:= Ao { y};)

which expands into the following code:

(Vw E Ao(y}, u E {pl(w) pr(w)} I u ~ y)
Ao(u} less:= w;

end V;
f (y) := z; (29)
(Vw E Ao{y), u E {pl(w) pr(W)} l U # Y)

Ao (U) with:= w;
end V;

The computat ional cost of (29) is

t(r) = O(r 2 + r x cost(k)),

while a fresh calculation of A0 costs O (# s x cost(k)). Thus, Ao is differentiable
with respect to indexed assignments to f for sufficiently large #s. []

THEOREM 3. W h e n e v e r # { x E s Ipi(x) = y) = O(1) for i = 1 . . r a n d all y,
3 n > 0 such that E1 is di f ferentiable wi th respect to indexed ass ignments (26)
for al l values # s > n.

PROOF. It follows from Lemma 2 and Lemm a 3 tha t the differential

0El, A o (f (y) := z;)

can be realized by the block

O-E~, Ao (s - : = Ao (y};)
f ly) := z;
O-E1, Ao(s +:= Ao{y};)

represent ing the following S E T L code block:

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

426 R. Paige and S. Koenig

(Vw E A0{y}, u E {pl(w) pr(w)} l u # y)
A0{u} l ess := w;

end V;
(Vw E A0{y})

ifk(w) t h e n
El less := w;

end if;
end V;
f(y) := z; (30)
(Vw E Ao{y})

if k (w) t h e n
E1 with:-- w;

end if;
end V;
(Vw E Ao[y}, u E {pl(w) pr(W)}]U ~ y)

A0{u} with:= w;
end V;

Since the computational cost of (30) is O(r 2 + r × cost(k)), while the cost of a
fresh calculation of E1 is O (#s × cost(k)), E1 is differentiable relative to indexed
assignments to f when #s is sufficiently large. []

The preceding arguments demonstrating that E1 is differentiable with respect
to (26) can also be applied to E2. Generalization of Theorem 3 to the case of
indexed assignment f (y l , . . . , y,) :-- z to multiparameter maps f can be found in
[33, pp. 46-48].

We have now given quite a number of illustrative examples of efficient deriv-
atives and can proceed to analyze conditions under which finite differencing can
improve code. As in Fong and Ullman's earlier work [15, 17], we require set
theoretic finite differencing to yield asymptotic speedup. However, our differenc-
ing technique, the required speedup, and the theoretical characterization of
conditions (enforced on both preprocessing and differentiation) under which this
speedup can be obtained are different from, yet also complementary to, theirs.

Without loss of generality, consider differentiation of a single nonelementary
expression f occurring within a program loop L restricted by the boundedness
requirement. Suppose that a chain J of expressions differentiable with respect to
L are used to reduce f. Then, if we assume that f is calculated more frequently
within L than in code occurring outside L, the following preprocessing conditions
must hold:

1. Under the most favorable condition, the initial evaluation of all the expres-
sions within J on entry to L should require the same asymptotic cost as a single
initial calculation of f within L.

2. When initialization costs are higher than this, as can happen when Jinvolves
auxiliary expressions, asymptotic speedup can still be expected when the prepro-
cessing costs do not exceed the asymptotic costs of code in the region just
outside L.

3. Finally, when large loop iteration is expected, we can sometimes perform
more costly preprocessing without sacrificing speedup; for example, the initiali-
zation for Rule J1 Method 2 in Appendix B involves sorting and was used
effectively to obtain a logarithmic speedup of the bankers algorithm (see Appen-
dix A3).
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 427

While the preceding conditions prevent preprocessing operations from retard-
ing the asymptotic running time of a program, either of the following two
conditions on the differential OJ(L) will ensure asymptotic speedup for the work
involved in computing f within L:

1. Ideally, when each derivative code block (associated with an elementary
expression within J) used to form the differential of J with respect to L requires
only a constant factor to compute (as is the case with most of the derivative rules
found in Appendix B), the cost of computing each extended pre- and postde-
rivative O-J(dx) and O+J(dx) for every modification dx (occurring in L) to a
variable x on which J depends will also be just a constant factor.

2. When the asymptotic cost of computing f is greater than this, then our
assumptions about loop boundedness and relative execution frequency of f will
ensure that the cost of maintaining the value of f within the differential OJ(L)
will be asymptotically less than the cost of calculating fwithin L.

3. When the preceding condition does not hold, asymptotic improvement can
still arise if another, more powerful condition holds. Suppose that f is formed by
composition and parameter substitution from the elementary expressions given
in Appendix B. Suppose also that, within L, only a single variable s on which f
depends is modified; suppose, finally, that within L each modification ds to s,
and, hence, each derivative block pair O-J(ds) and O+J(ds), is of the same form
(e.g., s could be set-valued and monotonically increasing (respectively, decreasing)
within L). Then the overall cost of maintaining all of the expressions of J along
any path from entry to exit of L and lying entirely within L will often be of the
same asymptotic order as a single full computation of all the expressions within
J at either the initial or final value of s (we call this cost worst-case-cost(J)). In
this case asymptotic improvement will occur when worst-case-cost(J) = O (worst-
case-cost(f)) or worst-case-cost(J) = O(preprocessing cost for J) , and such
improvement will occur even without the boundedness requirement.

Since all of our derivative rules can be adapted to Fong's deferred update
approach, it is useful to make a few comparative remarks. Fong handles the issue
of safety better than we do, since her expressions, differentiated with respect to
a loop L, are only kept available at points where they are used in L. However,
both methods face the same safety problems in handling preprocessing. Mainte-
nance of the difference sets allows Fong to deal with interesting copy optimiza-
tions that seem infeasible for us. Nevertheless, for contexts where our approach
applies, the chain rule ordering serves to eliminate potentially costly copy
operations on sets and tuples. Neglecting the cost of maintaining difference sets,
her deferred derivatives should be expected to cost no more, and in many cases
less, than our derivatives. However, maintenance of the difference sets requires
additional space and time costs that could make differencing twice as expensive
for her as for us. There are also situations where the maintenance of difference
sets will be relatively easy, and Fong's method can work better than ours, as, for
example, when loops allow branching to exit before differentiable expressions are
encountered but after modifications to parameters on which they depend are
encountered. However, since we intend to write our code at a high level of
abstraction, a great deal of explicit branching can be avoided. Of course, appli-
cation of the chain rule will introduce more complicated branching, and further

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

428 • R. Paige and S. Koenig

t ransformation can be expected to produce even greater complexity of control
flow as the program becomes progressively more efficient.

5. ALGORITHM IMPROVEMENT

5.1 Generalities

Before presenting a full case s tudy of algorithmic improvement by finite differ-
encing, we note tha t there exists a whole class of transit ive closure algorithms
tha t are amenable to our transformations. Th e main par t of such transit ive
closure algorithms typically consists of w h i l e loops tha t i terate a block of code
until an existential quantifier becomes false, tha t is, tha t have the following
general form:

$ initialize variables
(while 3x ~ s [k (x)) $ k is a Boolean expression (31)

block(x)
end while;

where "block" involves definitions of the forms s w i t h : = x and s l e ss := x to sets
s, indexed assignments f (y l y ,) :--- z to maps f tha t also have occurrences
within k, and perhaps other kinds of changes to variables on which k depends (we
also assume tha t block contains uses of x). Based on the informal measure of
computat ional cost given in Table II, the expense of evaluating the existential
quantifier

3x ~ sl k(x)

within (31) is O(#s x cost(k) x n) where n is the number of loop iterations.
The me thod of differencing will often be able to t ransform (31) into a faster

"workset" version,

$ initialize variables
workset := {x E s I k (x));
(while 3x E workset) (32)

block'(x)
end while;

where block ' is the differential of workset with respect to block. We expect tha t
the cost of executing a single cycle of block' will differ f rom the cost of executing
block by only a constant factor. Moreover, the potential ly costly search through
s within the whi le - loop predicate of (31) can be avoided in (32) at a cost of
O(#s x cost(k)) or sometimes O(#s x log # s x cost(k)) in preprocessing (i.e.,
evaluation of workset on entrance to the w h i l e loop). Th e cost of keeping workset
available in block is thus

O (#s x cost (k) + n x cost (k))

o r

O(#s x log # s x cost(k) + n x cost(k)) ,

which generally represents improvement . (We assume tha t the pa ramete r # s in
the cost est imate just above is some worst-case value.)

As is shown in [33, pp. 114-152], various sorting, parsing, graph, and general
problem-solving algorithms can be wri t ten in the form (31) and t ransformed by
our method into the form (32), in which the text of block' will often be ten t imes
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 429

larger than block and much more complex. Some examples of high-level algori-
thms (31) that we have differentiated are found in Appendix A.

The finite difference techniques described in this paper allow algorithms to be
written in a "high style" in which complicated manipulation of worksets can be
avoided at no cost, since these methods can directly generate faster algorithms
from these "high style" versions. The perfection of our methods will therefore
enable programmers to use powerful high-level dictions to write clear high-level
programs that can be transformed routinely into more efficient low-level versions.
This will facilitate, among other things, correctness proofs of programs, since, for
example, we can expect to prove undifferentiated programs of form (31) correct
more easily than their more complicated workset counterparts (32}.

5.2 Extended Example: An Algorithm to Find the Center of a Free Tree

The connection between differencing and an efficient version of an algorithm to
find the center of a free tree was first observed by Sridharan [44]. In this section
we use our finite differencing rules to transform an inefficient version of an
algorithm to find the center of a free tree into a highly efficient variant.

A free tree T is defined as a connected, undirected, acyclic graph. A leaf of T
is a node having only one adjacent node. If T consists of a single node n, then the
center of T is n; if T consists of only two nodes, nl and n2, then the center of T
is the set {nl, n2}; if T consists of more than two nodes, its center is the same as
the center of a tree T' formed from T by removing all the leaves of T.

Our initial algorithm specification represents T as a symmetric edge set E and
a set of nodes S. E maps each node n of S into the set E{n) of adjacent nodes.
The algorithm proceeds by repeatedly searching for the leaves of T and removing
these leaves from T as long as the number of nodes in T is greater than 2.
Speeding up this initial algorithm entails differentiating the search for the leaves.

To begin the algorithm development, we consider SETL Program 1. In order
to prepare this program for finite differencing, we apply two syntactic transfor-
mations,

E{x}*S---) {y E E (x } lY E S)

and

S - : = { x e S l # (y e E{x} l y e S} = 1} ---) (Vne (x e S l # { y e E{x) l y e S} = 1})
S l e s s := n;

e n d V;

which places Program 1 into the canonical form shown as Program 2 (i.e., a form
for which all set intersections and deletions have been turned into set formers,
and set additions and deletions are implemented at a lower level in terms of set-
element additions and deletions).

Analysis of Program 2 can detect three expressions differentiable within the
whi le loop. These are

enew{x} = {y E E{x} l Y E S}

numnew(x) = #enew{x}

leaves = {x E S I numnew(x) = 1}

of the form of Rule D2
in Appendix B;

of the form of Rule M2
in Appendix B;

of the form of Rule C1 Method 2
in Appendix B

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

430 R. Paige and S. Koenig

Line
no.

r e p r E: s y m map;
1 read(E) ;
2 S : = d o m a i n E ;
3 (while # S > 2)
4 S - : = {x E SI#(E{x} * S) = 1};
5 end while;
6 print(S);

$ declaration: E is symmetric
$ read the free tree
$ compute the nodes of the tree
$ remove leaves from S

Program 1

Line
no.

repr E: s y m map;
1 read(E) ;
2 S := d o m a i n E;
3 (whi le # S > 2)
4 (VnE { x E S I # { y E E { x } I y E S } =1})
5 S less:= n;
6 end V;
7 end while;
8 print(S);

$ read the free tree
$ compute the nodes of the tree

Program 2

where we define e n e w and n u m n e w in the following way:

e n e w = ([x , y] E E l y E S } ;
n u m n e w = {Ix, # e n e w { x }] : x E d o m a i n e n e w } .

If we let B stand for the whi le loop forming the main body of Program 2, then
our final efficient version of the algorithm should be generated by first transform-
ing B into the code represented by

achieve enew = {Ix, y] E E I Y E S};
achieve numnew = {[x, #enew{x}] : x ~ domain enew) ;
a c h i e v e leaves = (x E S I numnew(x) = 1};
aleaves, numnew, enew(B)

and then transforming the program P which results into a final form

Clean (Init (P))

Based on the static performance analysis for differencing presented in the
preceding section, it is easy to predict at this point that the differentiated tree
center algorithm will run in O (# E) steps. Preprocessing costs (determined by
treating the three achieve statements above as three separate assignments) are
clearly O (# E) . Because the set S is monotonically decreasing within the whi le
loop of Program 2, the cumulative costs of executing derivative code within this
loop will be asymptotically the same as the preprocessing costs. The remaining
statements 1, 2, 5, and 8 of Program 2 can contribute no more than O (# E) steps
to the cost of its differentiated form.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 431

Line
rio.

r e p r E: s y m m a p ;
1 r e a d (E) ;
2 S := d o m a i n E ;
3 a c h i e v e enew = {[x, y] ~ E lY E S};
4 a c h i e v e numnew = {Ix, #enew{x}]:x E d o m a i n enew};
5 a c h i e v e leaves = {x E S lnumnew(x) = 1};
6 (wh i l e # S > 2)
7 (V n E { x E S l # e n e w { x } = 1})
8 (Vu E E{n})
9 enew{u} l e s s : = n;

10 e n d V;
11 S l e s s := n;
12 e n d V;
13 e n d wh i l e ;
14 p r i n t (S) ;

P rog ram 3

Recall that the chain rule transformation aleaves, numnew, enew (B) is defined
recursively as a leaves, numnew (a enew (B)). To produce a enew (B) we only need
to insert the prederivative code, a-enew(S less:= n;), just before line 5 of
Program 2. According to Rule D2 in Appendix B, this prederivative is

(Vu E {x E domain E [n E E(x)))
enew{u} less:= n; (33)

end V;

Note, however, that, since E is a symmetric relation, we can replace the set
former {x E d o m a i n E I n ~ E(x}) appearing within (33) by E (n) . This follows
from the fact that E equals its inverse when it is symmetric. At this point we can
also replace the occurrence of (y E E{x} [y E S} within Program 2 by the
retrieval enew(x}. The algorithm now has the transitional form shown as Pro-
gram 3.

Next, we differentiate numnew relative to the whi le loop B1 at lines 6-13 of
Program 3. Then, to determine anumnew{B1), we only need to introduce
a-numnew(enew(u} less:= n;) just before line 9 of Program 3; by Rule M2, this
code is just

numnew(u) -:= 1;

At this point the occurrence of #enew {x} at line 7 of Program 3 can be replaced
by an occurrence of numnew(x). The tree center algorithm that results from the
preceding transformational steps is Program 4.

The final step of the chain rule involves differentiation of leaves. Note that this
entails transforming the whi le loop (which we designate B2) at lines 6-14 of
Program 4 into the code implied by aleaves(B2). It is easy to see that differen-
tiation of leaves depends on determining a-leaves(numnew(u) - : = 1;) and
a-leaves{S less:-- n;). By Rule C1 Method 2, the code implied by
a-leaves(S less: = n;) is

if numnew(n) = 1 then
leaves less: = n;

end if;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

432

Line
n o .

R. Paige and S. Koenig

r e p r E: s y m m a p ;
r e p r numnew: s m a p () 1' 0; $ declares: x ~ d o m a i n numnew ~ numnew(x) = 0

1 r e a d (E) ;
2 S := d o m a i n E ;
3 a c h i e v e enew = {[x, y] E E lY E S};
4 a c h i e v e numnew = {[x, # e n e w { x }] : x E d o m a i n enew};
5 a c h i e v e leaves = {x E S Inumnew(x) = 1};
6 (w h i l e # S > 2)
7 (Vn E {x E S I numnew(x) = 1})
8 (Vu E E{n})
9 numnew(u) - : = 1;

10 enew{u} l e s s : = n;
11 e n d V;
12 S l e s s : = n;
13 e n d V;
14 e n d wh i l e ;
15 p r i n t (S) ;

P rog ram 4

Line
nO.

repr E: s y m m a p ;
repr numnew: s m a p () ~ 0;

1 r e a d (E) ;
2 S := d o m a i n E;
3 a c h i e v e enew = {Ix, y] E E l y E S};
4 a c h i e v e numnew = {[x, # e n e w { x }] : x E d o m a i n enew};
5 a c h i e v e leaves = {x E S I numnew(x) ffi 1};
6 (w h i l e # S > 2)
7 (Vn E leaves)

$ m a k e a copy of leaves on en t rance to loop, and i tera te over the copy
8 (Vu E E{n})
9 i f u E S t h e n

10 i f numnew(u) = i t h e n
11 leaves l e s s : = u;
12 e l s e i f numnew(u) = 1 + i t h e n
13 leaves w i t h : = u;
14 e n d if;
15 e n d if;
16 numnew(u) - : = 1;
17 enew{u} l e s s : = n;
18 e n d V:
19 i f numnew(n) = I t h e n
20 leaves l e s s : = n;
21 e n d if;
22 S l e s s : = n;
23 e n d V;
24 e n d w h i l e ;
25 p r i n t (S) ;

P rog ram 5

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 433

while the code implied by O-leaves(numnew(u) - : = 1;) is

if u • S then
if numnew(u) = 1 then

leaves less: = u;
elseif numnew(u) -- 1 + 1 then

leaves with:-- u;
end if;

end if;

After this, the occurrence of {x E S] numnew(x) = 1} within P rog ram 4 is
r edundan t and can be replaced by the occurrence of leaves. T h e resul t is Pro-
g ram 5.

Note tha t the f o r a l l loop L at lines 7-23 of P rog ram 5 involves an i terat ion
over the set leaves, and leaves is also modified within the body of L. In accordance
with S E T L semant ics [41], we assume tha t a copy of leaves is made on ent rance
to L; i terat ion proceeds over this copy (which cannot be modified within the body
of L). Any occurrences of the variable leaves within the body of L refer to the
original instance of leaves and not to the copy.

At this point initialization can be worked out on all of P rog ram 5. T h e Ini t
t ransformat ion replaces the sequence of a c h i e v e s t a t ements a t lines 3-5 by a
valid code block tha t makes enew, numnew, and leaves available on exit. A full
implementa t ion of Ini t is presented in the next section; the actual block produced
by Ini t is as follows:

numnew := { };
enew := { };
(V[x, y] • E)

if y • S then
numnew(x) +:= 1;
enew{x} with:= y;

end if; (34)
end V;
leaves := { };
(Vx • S)

if numnew(x) = 1 then
leaves with: = x;

end if;
end V;

Note tha t the initialization block (34) first evaluates n u m n e w and enew to-
gether. Afterward, leaves is constructed by itself. Note, also, tha t construct ion of
the three vir tual variables is incrementa l and can actual ly be defined in t e rms of
our differential operator; tha t is, (34) can be genera ted by

Onumnew(O-enew(E := { };)
(V[x, y] • E)

O-enew(E with:-- Ix, y];)
end V;)

O-leaves(S := { };~
(Vx • S)

O-leaves(S with: = x;)
end V;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

434 R. Paige and S. Koenig

Line
no.

repr E: s y m m a p ;
repr n u m n e w : smap() 1' 0;

1 r e a d (E) ;
2 S := d o m a i n E ;
3 numnew := { };
4 (V[x, y] E E)
5 i f y ~ S then
6 numnew(x) +:= 1;
7 e n d if;
8 e n d V;
9. leaves := { };

10 (Vx E S)
11 i f numnew(x) = 1 then
12 leaves w i t h : = x;
13 e n d if;
14 e n d V;
15 (wh i l e # S > 2)
16 (Vn E leaves)
17 (Vu ~ E{n})
18 i f u E S then
19 i f numnew(u) = 1 then
20 leaves l e s s : = u;
21 e l s e i f numnew(u) = 1 + 1 then
22 leaves w i t h : = u;
23 e n d if;
24 e n d if;
25 numnew(u) - : = 1;
26 end V;
27 i f numnew(n) = 1 then
28 leaves l e s s : = n;
29 e n d if;
30 S less:= n;
31 e n d V;
32 e n d wh i l e ;
33 p r i n t (S) ;

P rog ram 6

At this point, dead-code elimination can be performed. Our dead-code elimi-
nation procedure will regard the output statement print(S) at line 25 and the
input statement read(E) at line 1 of Program 5 as "essential" statements. Any
statement that can contribute to the value of S used in this p r in t statement is
also considered essential. Observation shows that all assignments to e n e w are

unessential and thus can be eliminated as dead code. The result of all these
transformational steps is Program 6, the final form of our algorithm.

It seems likely that current technology exists to mechanize finite differencing
sufficiently to carry out the development of the tree center algorithm from
Program 1 to Program 6 automatically. This full transformation yields a consid-
erable speedup, since Program 1 runs in O (#S × #E) steps, while Program 6 runs
in O (# E) steps. Moreover, the soundness of our transformations, along with a
standard correctness proof of Program 1, proves the correctness of Program 6, a
less perspicuous but more efficient equivalent algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 435

The reader will note that several obvious minor improvements to Program 6
can be made. For example, we can place the statement

a s s e r t y E s; (35)

just prior to line 5 in order to reduce the conditional statement at lines 5-7 to

numnew(x) +:= 1;

Based on value flow analysis [40], a high-level optimizer can even perform this
transformation automatically. Likewise, standard constant folding can replace
the term 1 + 1 at line 21 by the constant 2.

More significant, if we provide input assumptions that E is a free tree within
Program 1, it is also possible to justify the assertions

a s s e r t numnew(u) ~ 1;

prior to line 19 and

assert numnew(n) = 1;

just before line 27; and this allows us to simplify the conditional statements at
lines 19 and 27. Consequently, l eaves can be represented as a queue, and the copy
of l eaves required on entry to the foral l loop at line 16 can be avoided.
Unfortunately, the current state of correctness technology is not sufficiently
advanced to make these additional improvements completely automatic.

Further automatic improvement by a large constant factor may be achieved by
a combination of techniques, the most plausible of which is Schwartz's method of
data-structure selection (see [12, 37]). This final transformation will produce a
tree center program at about the level of PASCAL.

6. IMPLEMENTATION ALGORITHMS

In order to complete our description of finite differencing, we need to specify the
transformations Init and Clean.

6.1 Init (Initialization Transformation)

If B is a code block, then B ' = Init(B) is a new code block formed from B by
transforming every contiguous sequence of achieve statements of the form

achieve c = f (x l x,); (36)

into a code block that evaluates each expression f in the sequence and stores its
value into c.

The Init transformation, as discussed in [33, pp. 43, 102-104], uncovers a new
way of handling a particular kind of loop jamming in a programming language
setting. To illustrate this idea, we first consider the problem of initializing the
two expressions

cl = (x ~ s I k l (x)) ;

c2 = {x E cl I k2(x)) . (37)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

436 R. Paige and S. Koenig

A straightforward way to initialize (37) is to execute the ass ignments

cl := (x E s I kl(x)}; (38)
c2 := (x C c, L k2(x)};

where the order of execution within (38) conforms to the obvious rules of
dependency. However , the computa t ion (38) requires two full i terat ions th rough
possibly large sets.

A be t te r approach arises af ter we consider initializing el in the following
incrementa l way:

ci:= (};
(Vx ~ s)

i f kl(X) then (39)
Cl with: = x;

end if;
end V;

since differentiation of c2 with respect to code block (39) yields an efficient
initialization of c2 j a m m e d into the loop used to initialize cl. Using our differential
operator , we can specify the collective differential initialization of c~ and c2 as
follows:

Oc2(O-Cl(S := () ;))
(Vx ~ s) (40)

0C2 (0--Cl (S with: = x;))
end V;

which is the same as

c2:= () ;
el . '= () ;
(Vx ~ s)

if kl(X) then
if k2(x) then (41)

c2 with: = x;
end if;
cl with: = x;

end if;
end V;

We say t ha t (39) represents an expans ion of cl abou t s. I t is convenient to
abbrevia te (39) as O-cl(s := s;) , f rom which (39) can be derived using the

following identities:

O--Cl(S := S;) -~ O--Cl(S :-~- () ;)
O-c,(s +:= s;)

O-cl(s +:= s;) = (Vx E s)
O-cl(s with := x;)

end V;
We call (40) an example of vertical jamming. Another kind of j amming is

i l lustrated by initialization of the two independent expressions

C3 -'--- (X E c2] k3(x)); (42)

C4 m- (X ~ C2] k 4 (x)) ,

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 437

together with the previous two expressions (37). Suppose tha t c2 does not occur
free in ei ther ka or k4. Then c3 and c4 may be initialized in any order following or
in concert with the initialization of c2. In the case where there are also no free
occurrences of cl in k3 or k4, it is worthwhile to initialize cl, c2, c3, and c4
collectively. This is achieved by executing the following differential code:

0c3, c4, c2(a-cl(s := s;)) (43)

However, for the case when cl occurs free in ks and k4, the code (43), though
correct, will require execution of differential code for c3 and c4 with respect to
modifications to c2 and c~. In this case, (43) will not offer the same speedup as in
the previous case, and it is preferable to initialize c3 and c4 by executing

O-c~(c~ := { };)
o-c,(c~ := (] ;)
(Vx ~ c2)

a-c3(c2 with:= x;) (44)
a-c4(c2 with:= x;)

end V;

(which can be abbreviated a-c4, c3 (c2 := c2;)) just after executing code block (40).
Note tha t initialization of c3 and c4 within (43) and (44) represents an initialization
of independent expressions, a phenomenon we denote h o r i z o n t a l jamming. Fur-
ther insight into our notion of jamming by differential initialization may be gained
from consideration of a more complicated example tha t is taken from the case
s tudy of the last section: initialization of

e n e w = {Ix, y] E e [y E s};
n u m n e w = {Ix, # e n e w { x }] : x E d o m a i n e n e w } ; (45)

l e a v e s = { x E s I n u m n e w (x) = 1}.

As in the previous examples, jamming succeeds after e n e w is expanded about
its parameter e; tha t is,

enew := { };
(V[x, y] E e)

i fy E s then (46)
enew with: = [x, y];

end if;
end V;

which is a realization of

O-enew(e :-- e;) (47)

Observe tha t it is possible to differentiate n u m n e w with respect to code block
(47) and obtain the following efficient initialization of e n e w vertically j ammed
with n u m n e w in a single loop:

n u m n e w := { };
enew := { };
(V[x, y] ~ e)

if y E s then
n u m n e w (x) +:= 1; (48)
enew with: ffi [x, y];

end if;
end V;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

438 R. Paige and S. Koenig

Note tha t l e a v e s can also be constructed differentially with respect to (48).
Unfortunately, in this case, the differential code will force an e lement x to be
added to l e a v e s whenever n u m n e w (x) is set to 1; but, after n u m n e w (x) is
incremented to 2, x will be removed from l eaves . To avoid such extraneous
operations we will initialize l e a v e s (by expansion around its pa ramete r s) by itself
immediately after (48).

Aside from the constant-factor speedup tha t can result f rom jamming, there is
another aspect tha t is equally important: vertical jamming can eliminate expres-
sion dependency. Note, for example, tha t in the initialization code (48) n u m n e w

does not depend on e n e w , al though there would be dependency if n u m n e w and
e n e w were initialized separately by the straightforward assignments,

enew := {[x, y] E e I Y ~ s} (49)
n u m n e w := {Ix, # e n e w { x }] : x E domain enew}

Consequently, if n u m n e w is essential to a program, in the case of (49) the
dependency of n u r n n e w on e n e w wi l l force e n e w to be essential also. However, in
the case of (48) the lack of dependency permits e n e w to be removed f rom (48) as
dead code whenever it is not essential beyond its initialization block.

The preceding examples lead to the following general rule:

R u l e 1. Differential initialization costs for an expression

E = f (x l , . . . , x ,)

j ammed together with other expressions should be no worse than those of a full
separate evaluation of f (x l , . . . , x ,) .

Adherence to Rule 1 is facilitated by following two part icular "rules of thumb":

R u l e 2. We only initialize an expression differentially with respect to a single
parameter .

R u l e 3. For each e lementary expression f (x l , . . . , Xn) we only allow f to be
initialized differentially (or by separate expansion) with respect to certain of its
parameters , called "expandable" parameters , for which the technique is most
likely to be profitable.

Having said all this, we can now go on to specify the Init t ransformation.
Consider initialization for a chain of differentiable expressions E i = fi, i = 1 . . n.

The following steps will produce a block B tha t makes Ei , i = 1 . . n, available on
exit. The block B will consist of a sequence of subblocks each of which is used to
fully construct expressions incremental ly with respect to a single expandable
parameter .

(1) Let B start out as an empty code block.
(2) For each Ei = fi, i = 1 . . n, let b be the last subblock of B that is used to initialize a

virtual variable Ek on which ~ depends (and let k = 0 if there is no such subblock).
Then the following three cases arise:

(a) Vert ical J a m m i n g . Suppose that k > 0 and that Ek is an expandable
parameter of Ei {according to Rule 3). Suppose, also,
that the code subblock b that initializes Ek includes no
code that initializes any other parameter on which Ei
depends (according to Rule 2). Then to initialize Ei we
replace b with OEi { b).

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 439

(b) Horizontal Jamming. If case (a) does not apply, let b be the first subblock of
B that occurs after all of the subexpressions of 1~ are
initialized, and that is formed by expansion around an
expandable parameter x of]~; that is, b is of the form

. . . O-J(x := x;) . . .)
where J is a sequence of virtual variables all jammed
horizontally around x. Then to initialize Ei we replace b
with

. . . O-El, J (x := x;) . . .) .
(c) Separate Expansion. When neither of the other cases applies, we separately

initialize Ei by expansion around one of its expandable
parameters x and append the subblock O-Ei (x := x;) to
the end of B.

We note with regard to the "approximation" procedure just above that a more
general procedure that produces an initialization block with the fewest number of
loops (and also obeys Rules 2 and 3) is equivalent to an NP-hard DAG covering
problem where the DAG reflects expression dependency. In fact, in the simplest
case in which all expressions to be initialized are independent, the problem
reduces to one of finding optimal horizontal jamming. This is equivalent to the
NP-complete "hitting set" problem (cf. [19, p. 222]). Although the algorithm we
have presented can result in a suboptimal solution, the solution will never be
worse than a straightforward unjammed solution. Also, our algorithm can be
made to run in time proportional to the size of its output.

The idea of horizontal and vertical expression jamming has been studied before
in the contexts of programming languages by Burstall, Darlington, and Burge [6,
7], file processing systems by Morgenstern [32], and system construction by
Feather [14, pp. 5-2-5-5], although the transformations found in those references
are expressed and implemented differently than here. Morgenstern's work is
particularly noteworthy, since the overhead costs involved in iterating through
files stored on secondary storage are much greater than those involved in cycling
through program loops residing in main memory. Thus, whenever Morgenstern's
jamming techniques can eliminate a full iteration through a file, the constant-
factor speedup in systems performance can be considerable. Morgenstern uses a
dynamic programming algorithm to obtain profitable loop jamming.

6.2 Clean(P) (Cleanup Transformation)

The Clean transformation is applied to a full program P as the final step of finite
differencing. It functions to sweep up the transformational debris that the
differential operator leaves in its wake. Surprisingly, the major part of this
cleanup procedure can be accomplished by standard dead-code elimination. This
is because, whenever the differential operator is used to keep available an
expression

c l = e l (e 2)

which depends on an inner expression

C2 ~ e 2 ,

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 3, Ju ly 1982.

440 R. Paige and S. Koenig

C2 will also be kept available. However , it is often the case tha t the diferential
code used to main ta in cl has no uses of c2, which allows us to pe r fo rm dead-code
el imination on the differential code t ha t main ta ins c2.

Our Clean t ransformat ion can be specified using a var ian t of an a lgor i thm given
by Kennedy [25]. This a lgor i thm uses a negat ive s t ra tegy in which all "essent ial"
s t a t ements within a p rog ram P are determined. All o ther s t a t emen t s are consid-
ered dead and can be eliminated.

T h e Clean procedure begins by locating (within P) a small set crit of p rog ram
points containing essential s t a t emen t s of P f rom which all o ther essential state-
men t s of P can be determined. Initially, crit will include all of the p r i n t and
sequential r e a d s t a t emen t s 3 of P t ha t are reachable f rom the p rog ram ent ry
point. T h e a lgor i thm proceeds by adding new essential s t a t emen t s to crit accord-
ing to a s tandard t ransi t ive closure process. When crit can no longer grow, the
procedure halts.

New essential s t a t emen t s t ha t are added to crit are de te rmined using the
usetodefmap (cf. Sect ion 3.4) and three "local" maps , iuses, instof, and compound,
defined as follows:

1. iuses. I f i is a p rog ram point containing a s t a t e m e n t q, then iuses{i} is the
set of var iable uses contained within q. T h e value of iuses{i} is clear when q is a
s imple s ta tement . W h e n q is a condit ional s t a t e m e n t

i f c~ t h e n
B1

e l s e i f c2 t h e n

e l s e i f c. t h e n
B .

e l se
Bn+l

end if;

iuses{i} is the set of uses occurring within cl Cn. When q is a w h i l e loop,
iuses{i} contains only those uses within the condit ion of the loop. W h e n q is a
f o r a l l loop, iuses(i} is the set of all uses within the loop i terator.

2. instof. I f d is a definition, then instof(d) is the p rog ram point of the
s t a t e m e n t q t h a t contains d.

3. compound. I f a s t a t emen t q is contained within an immedia te ly enclosing
compound s t a t emen t r, t hen compound(q) = r.

T h e Clean procedure is based on the following condition, under which a
s t a t e m e n t j t h a t does not belong to crit can be added to crit:

:~i E crit, u E iuses(i} , d E usetodef(u} [j E h s t o f { d } o r j = compound(i).
(50)

3 The observation that sequential read statements must be included in the initial value of crit is due
to Richard King. Consider this example: read(a); read(a); print(a);

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 441

For predicate (50) to hold, cri t must contain a s ta tement i tha t ei ther

(1) contains a use u tha t is linked (via the u s e t o d e f map) to a definition d
contained in the s ta tement j or

(2) is immediately contained in a compound s ta tement j .

The following high-level S E T L program carries out the essential code detect ion
phase of the Clean transformation:

(while 3i E (instof[usetodef[iuses[crit]]] + compound[crit]) - crit)
crit with:= i; (51)

end while;

6.3 Finite Differencing Algorithm

We now sketch an algori thm tha t could actually au tomate all of the transforma-
tional steps given in our case s tudy of Section 6.2. Certain implementat ion-level
details (such as matching operations, macro expansion procedures, e lementary
expression form and derivative tables) are absent, however, and the reader is
asked to refer to [33, pp. 71-114].

We assume that, before the finite differencing procedure can be applied, the
code pres t ructure is in parse tree form, over which a control flow graph is
imposed. Data flow analysis is worked out so tha t the u s e t o d e f a n d de f touse maps
are defined, and type analysis is also performed (by the method of T e n e n b a u m
[47]}.

Algorithm: Automatic Finite Differencing

(1) Apply preparatory transformations (cf. [33, pp. 235-236]).
(2) Decompose the program into its loop structure L1, L2 , L, with the property i < j

Li is contained in L] or Li N Lj = () (cf. [2]).
(3) For i = 1 .. n determine a chain Ji of differentiable expressions to be reduced within

Li, but not in any region enclosing Li.
(4) For i = n, n - 1 ,1 transform Li into

achieve A(E~f)eJi E = f
OJi(Li)

(5) If P is the program that results from step (4), transform P into the final program

Clean (Init (P))

7. CONCLUSION

Finite differencing of applicative expressions extends an old mathemat ica l idea to
the general problem of algori thm optimization and, hence, to high-level-language
implementat ion and design. The techniques we have discussed in this paper are
likely to have an impact on a number of pragmatic issues related to both
programming languages and databases. Many of these issues have yet to be fully
explored.

Application of finite differencing to languages such as APL, SNOBOL, and
even P L / I (whose string handling operations may be receptive to differencing
techniques) should be worthwhile. Similarly, it should be useful to consider
dictions for specification of derivative rules for user-defined operations and
procedures. Such a capability would extend the utility of finite differencing to the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

442 R. Paige and S. Koenig

larger area of software development by facilitating the construction of large,
modular, incremental programs.

Our techniques have been seen to offer new and efficient implementations of
very high-level programming language dictions. In [33, pp. 157-159] it is shown
how finite differencing can be used to implement fixed-point iterators that cause
a code block to be executed repeatedly until there is no change of state. Finite
differencing opens up new opportunities to implement exception handling. We
have observed that generalized "on" conditions may be implemented efficiently
by extending the differential to apply to conditional transfers as well as to
applicative expressions.

Most applications of finite differencing that we have studied are based on the
paradigm of differentiating costly expressions executed repeatedly within program
loops L. Another paradigm discussed in [33, pp. 164-165] that has only recently
been explored has to do with restructuring a program loop L containing uses of
an expression e (that is not differentiable with respect to L) in order to make e
differentiable with respect to L. This second paradigm suggests a useful strategy
for improving the speed of a search through a power set in the following context:

3s E pow(e) [k(s).

Whenever k has subexpressions that are differentiable relative to element
additions to and deletions from s, we can restructure the iteration through the
power set by performing a depth-first search (through a tree in which the root
represents { }, the successors of the root are all the singleton sets, etc.). This
backtrack approach is still inefficient, but it avoids construction of pow(e) and
allows subexpressions of k to be differentiated with respect to the incremental
construction of s. This should represent an improvement.

Recently, the preceding idea has been pushed further by Sharir [43], who has
developed a strategy based on Schwartz's s in i s ter a s s i g n m e n t [41] in which the
depth-first search can be performed through a tree that has been pruned signifi-
cantly. Sharir's methods provide a backtracking optimization which can speed up
a nondeterministic algorithm that runs in somewhere between 2" and n n steps to
an algorithm that runs in polynomial time.

In [31] finite differencing is applied to database view maintenance, integrity
control, and exception handling. Some preliminary ideas concerning database
systems that adapt their physical structures dynamically via finite differencing
are discussed in [33, pp. 160-163].

Ultimately, the success of installing finite differencing as part of a conventional
optimizing compiler may rest on the efficiency of the implementation. We have
already implemented a semiautomatic finite differencing system (Rutgers Ab-
stract Program Transformation System, or RAPTS) for a subset of SETL, and
have used RAPTS to derive the tree center algorithm discussed here, as well as
several more complicated algorithms. The results of our implementation will be
reported in the near future.

Currently, we see two viable and complementary approaches to finite differ-
encing, one that has been developed by Fong and Ullman [15, 17] and the other
initiated in [33, 35] and developed further in the present paper. We believe that
a unified approach to finite differencing that incorporates both methods should
lead to conceptual and pragmatic improvements.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 443

APPENDIX A. BASE FORM RUBBLE ALGORITHMS

In [39, 42] Schwartz coins the term "base form rubble" to denote the most concise
form of an algorithm from which a concrete implementation-level variant may be
derived without difficulty by manually selected "routine" transformations. In this
appendix we present a sampling of rubble programs whose more complex opti-
mized forms can be derived automatically by finite differencing. We provide the
necessary insight into how speedup can be achieved for these algorithms, but to
obtain the details involved in the actual transformational steps the reader should
refer to [33, pp. 114-152].

A1. Knuth's Topological Sort

Perhaps the first example of a nontrivial algorithm transformed semimechanicaUy
by finite differencing is the topological sort case study given by Earley [13]. Many
of the steps which Earley applied manually were later applied more systematically
and also without manual intervention in [33, pp. 114-119] to the base form SETL
algorithm given below. The input assumed by this algorithm is a set s and a set
of pairs s p representing an irreflexive transitive predecessor relation defined on
s; as output, it produces a tuple t in which the elements of s are arranged in a
total order consistent with the partial order sp .

t:=[];
(while 3a E s I (sp{a} • s) = { }) $ find a minimal element

t with:= a; $ add it to the end of t
s less:= a; $ obtain a new poset

end while;

Finite differencing will improve the algorithm above by differentiating the set
of minimal elements

m i n s e t = { x E s I (sp (x } * s) -- (}}

so that the costly search involved in executing the existential quantifier can be
avoided. Maintenance of the successor relation (which is the inverse of s p) is
crucial to maintenance of m i n s e t and contributes to the order-of-magnitude
speedup which the method yields.

A2. Transitive Closure

Another example closely related to topological sort is an algorithm to compute
the image of a set s under transitive closure of a relation f. A succinct SETL
version of this algorithm is

(while f [s] + s ~ s) $ while image(s) under fis not a subset of s,
s +:= f[s]; $ augment s

end while;

Finite differencing will improve the running time of transitive closure by
differentiation of

o u t s e t = { x E s I # (f { x) - s) > 0},

which denotes the set of elements x E s in which the image set f (x } has values
outside of s. But, in order to keep o u t s e t available, f-~ must also be kept available.
The final optimized version will run in O (# f) steps.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

444 R. Paige and S. Koenig

A3. Habermann's Bankers Algorithm

While the previous two examples illustrate algorithm optimization by an order of
magnitude in running times, finite differencing applied to the base form of the
bankers algorithm given below will yield a logarithmic speedup in general, and an
order-of-magnitude improvement if the preprocessing costs (dominated by a sort)
can be neglected.

The general bankers algorithm can be used to detect deadlock among concur-
rent processes competing for resources in an operating system environment. This
algorithm models resource allocation by bank "loans" to customers who make
known demands. Different kinds of resources are represented by a set R of
currency types. The concurrent processes are represented by a set cus of bank
customers. For each kind i of currency R, cash(i) represents the total amount of
this currency still unallocated by the bank; loan(i , c) is the loan of type i currency
owed by a customer c; and claim(i , c) is a customer's additional demand for
currency type i. Once a customer's total demand is met, he will repay the bank
his entire borrowed amount within a finite amount of time. If the bank can satisfy
the demands of all of its customers, one at a time, then the initial state represented
by cash, cus, claim, and loan is "safe"; that is, a deadlock can be avoided.

The algorithm follows a strategy in which the bank will try to meet the
demands of any customer c whose claims can all be satisfied; that is, the condition

Vi E R I c laim(i , c) <_ cash(i)

holds. The bank will then wait until c makes full repayment and is no longer a
customer before scheduling any more customers. If all customers have been
eliminated when the algorithm terminates, the original configuration of loans is
"safe"; otherwise, it is not.

A base form version of the bankers algorithm can be written as follows:

(while 3c E cus I (Vi E R I claim(i, c) <_ cash(i))
(Vi E R) $ customer c pays back

cash(i) +:= loan(i, c); $ all of his loans
end V;
cus less:= c; $ and goes away

end while;

This algorithm executes in time proportional to

(# c u s) 2 x # R .

Differentiation of the set of good customers

(c E cus I # (i E R I c laim(i , u) > cash(i)} = O}

will speed up the algorithm, so that the main whi le loop will run in time
proportional to # R x # c u s ; the preprocessing costs that result from sorting the
claims for each research type incur a computational expense proportional to
R x # c u s x log # c u s .

APPENDIX B. FINITE DIFFERENCING RULES

The following is a small portion of a basic derivative table for set theoretic finite
differencing. A more complete table may be found in [34], which is a longer

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Finite Differencing of Computable Expressions 445

version of this paper. The Init code given for each basic form is an expansion
around a single expandable parameter . Within the derivative code, potential ly
expensive subexpressions tha t must be reduced are underlined.

In the table below, all modification entries for set variables are expressed as
"str ict" operations, tha t is, s w i t h : = z (for which we assume the precondit ion
tha t z does not belong to s) and s less := z (for which we assume the precondit ion
tha t z belongs to s). Within derivative code entries, all set modifications are also
strict.

To use the rules below for general S E T L code, it is first necessary to apply
prepara tory t ransformations to this code so tha t set unions and differences
s +_:= d e l t a are expressed first as disjoint unions s +:-- (d e l t a - s) and subset
deletions s - : = (d e l t a • s), which must subsequently be rewri t ten in the lower
level forms

(Vz E delta I z ~ s)
s with:-- z;

end V;

and

(Vz E delta I z E s)
s less:= z;

end V;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

@

° ,

m

II .-~

II

"~

!1.

]l jl II

• ~ II II ~ II II ~ ~ . . ,.

0

C~

• II

A . ~

i l

II c~

!l. "~

C,Q

• A

P~

o

c~

II

d

v

I I~ --I-

II II ~ II

d
II

I

llJ

L,mJ
° °

Lm~
Lm-J

II

J ~

q~

II

~2

llJ

II

!l.

"~ !l. u J ~

IU

v . ~

II II

°°

@

@

@

A

t l J ~

!i.
A

UJ

II

r ~

tlJ

tlJ

II

e,i

It.

A

r_,~ I

w I

!l li]l
0 O i u~

W ~,~ , - LIJ •

!l II

W

W
r - - " " t

II

LIJ

, , , . . ,

LIJ

II

!l

!i W ~

O0

0

II

B ~

lUl

lU

- - i A

>~ ~

II

W

lU

II

c~

J ~

C~

llJ

l.U

II

c~

II

!l. u J ~

O)

0

A

~ " . ~" .~1~"

n ii !l. i~

V

v

tlJ

II

°~,,~
r ~

4 ~

o

o

o

r~

r/l

c ,

,-4
!1.

A

II

• ~ V ~ V ~

!~. ~ . ~ ~ ' ~
0

A

~1

~1 ~1

~v
~ A

~ - - . ~ I _

o

II II
o ~; r

e~
@

. ~

AI

+

r~

i
V

I:

V

I

i

~Jl.

II
" i "

@

~ V

@

o +

° ~

~ L I J

"a II

@
if E~

~LU !l. v

v

@

c~

@

~s

+ ~ ~ ~

!i. !l.
÷ I

c~

~ W

v

!1.

~ "~

4=~

H II

II

Finite Differencing of Computable Expressions 453

ACKNOWLEDGMENTS

We have benefited from conversations with Martin Dowd, Jerome Fe]dman,
Sheldon Finkelstein, Patrick Fischer, Amelia Fong, Matthew Hecht, Chuck
Hedrick, Nieba Jones, Richard King, and Barry Rosen.

REFERENCES
(Note. References [11, 45] are not cited in the text.)

1. AHO, A., AND ULLMAN, J. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,
1978.

2. ALLEN, F.E. Program optimization. Annu. Rev. Autom. Program. 5 (1969), 239-307.
3. ALLEN, F.E., COCXE, J., AND KENNEDY, K. Reduction of operator strength. In Program Flow

Analysis, S. Muchnick and N. Jones (Eds.). Prentice-Hall, Englewood Cliffs, N.J., 1981, pp.
79-101.

4. BAUER, F.L., AND THE C.I.P. LANGUAGE GROUP. Report on a wide spectrum language for
program specification and development. Tech. Rep. TUM-I8104, Institut fiir Informatik, Tech-
nische Universit~it Miinchen, M,mich, W. Germany, May 1981.

5. BROY, M., PARTSCH, n., PEPPER, P., AND WIRSING, M. Semantic relations in programming
languages. In Information Processing 80 (1980), 101-106.

6. BURGE, W. An optimizing technique for high level programming languages. Computer Science
Tech. Rep. RC 5834, #25271, IBM Research Center, Yorktown Heights, N.Y., 1976.

7. BURSTALL, R.M., AND DARLINGTON, J. A transformation system for developing recursive pro-
grams. J. ACM 24, 1 (Jan. 1977), 44-67.

8. COCKE, J., AND KENNEDY, K. An algorithm for reduction of operator strength. Commun. ACM
20, 11 (Nov. 1977), 850-856.

9. COCKE, J., AND MARKSTEIN, P. Strength reduction for division and modulo with application to
accessing a multilevel store. Computer Science Tech. Rep. RC 7013, #30059, IBM Research
Center, Yorktown Heights, N.Y., 1978.

10. COCKE, J., AND SCHWARTZ, J.T. Programming languages and their compilers. Lecture notes,
Courant Institute of Mathematical Sciences, New York Univ., New York, N.Y., 1969.

11. DEWAR, R.B.K. The SETL programming language. Unpublished manuscript.
12. DEWAR, R.B.K., GRAND, A., LIU, S.-C., SCHWARTZ, J.T., AND SCHONBERG, E. Programming by

refinement, as exemplified by the SETL representation sublanguage. ACM Trans. Program.
Lang. Syst. 1, 1 (July 1979), 27-49.

13. EARLEY, J. High level iterators and a method for automatically designing data structure
representation. Comput. Lang. 1, 4 (1975), 321-342.

14. FEATHER, M.S. A System for Developing Programs by Transformation. Ph.D. dissertation, Dep.
of Artificial Intelligence, Univ. of Edinburgh, Edinburgh, Scotland, 1979.

15. FONG, A.C. Inductively computable constructs in very high level languages. In Conference
Record of the 6th Annual ACM Symposium on Principles of Programming Languages, San
Antonio, Tex., Jan. 29-31, 1979, pp. 21-28.

16. FONG, A.C. Generalized common subexpressions in very high level languages. In Conference
Record of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles, Calif.,
Jan. 17-19, 1977, pp. 48-57.

17. FONG, A.C., AND ULLMAN, J.D. Induction variables in very high level languages. In Conference
Record of the 3d ACM Symposium on Principles of Programming Languages, Atlanta, Ga., Jan.
19-21, 1976, pp. 104-112.

18. FREUDENBERGER, S.M. SETL data structures. SETL Newsl. 189B, Dep. of Computer Science,
New York Univ., New York, N.Y., May 1980.

19. GAREY, M.R., AND JOHNSON, D.S. Computers and Intractability. W.H. Freeman, San Francisco,
1979.

20. GERHART, S.L. Correctness-preserving program transformations. In Conference Record of the
2d ACM Symposium on Principles of Programming Languages, Palo Alto, Calif., Jan. 20-22, 1975,
pp. 54-66.

21. GOLDSTINE, H.H. A History of Numerical Analysis. Springer-Verlag, New York, 1977.
22. GOLDSTINE, H.H. The Computer from Pascal to Von Neumann. Princeton Univ. Press, Prince-

ton, N.J., 1972.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

454 • R. Paige and S. Koenig

23. HECHT, M. Flow Analysis of Computer Programs. Elsevier North-Holland, New York, 1977.
24. HOARE, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.

1969), 576-580, 583.
25. KENNEDY, K. A survey of compiler optimization techniques. In Program Flow Analysis, S.

Muchnick and N. Jones (Eds.). Prentice-Hall, Englewood Cliffs, N.J., 1981, pp. 5-54.
26. KENNEDY, K. Variable subsumption with constant folding. SETL Newsl. 123, Dep. of Computer

Science, New York Univ., New York, N.Y., Feb. 1974.
27. KENNEDY, K. Global dead computation elimination. SETL Newsl. 111, Dep. of Computer

Science, New York Univ., New York, N.Y., Aug. 1973.
28. KENNEDY, K. An algorithm to compute compacted use definition chains. SETL Newsl. 112,

Dep. of Computer Science, New York Univ., New York, N.Y., Aug. 1973.
29. KENNEDY, K. Linear function test replacement. SETL Newsl. 107, Dep. of Computer Science,

New York Univ., New York, N.Y., May 1973.
30. KENNEDY, K. Reduction in strength using hashed temporaries. SETL Newsl. 102, Dep. of

Computer Science, New York Univ., New York, N.Y., Mar. 1973.
31. KOENIG, S., AND PAIGE, R. A transformational framework for the automatic control of derived

data. In Proceedings, 7th International Conference on Very Large Data Bases, Cannes, France,
Sept. 9-11, 1981, pp. 306-318.

32. MORGENSTERN, M. Automated Design and Optimization of Management Information System
Software. Ph.D. dissertation, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass., Sept. 1976.

33. PAIGE, R. Formal Differentiation. UMI Research Press, Ann Arbor, Mich., 1981. Revision of
Ph.D. dissertation, Dep. of Computer Science, New York Univ., New York, N.Y., June 1979.

34. PAIGE, R., AND KOENI6, S. Finite differencing of computable expressions. Tech. Rep. LCSR-
TR-8, Dep. of Computer Science, Rutgers Univ., New Brunswick, N.J., Aug. 1980.

35. PAIGE, R., AND SCHWARTZ, J.T. Expression continuity and the formal differentiation of algo-
rithms. In Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, Calif., Jan. 17-19, 1977, pp. 58-71.

36. ROSEN, B.K. Degrees of availability. In Program Flow Analysis, S. Muchnick and N. Jones
(Eds.). Prentice-Hall, Englewood Cliffs, N.J., 1981, pp. 55-76.

37. SCHONBERG, E., SCHWARTZ, J.T., AND SHARIR, M. An automatic technique for selection of data
representations in SETL programs. ACM Trans. Program. Lang. Syst. 3, 2 (Apr. 1981), 126-143.

38. SCHWARTZ, J.T. Correct program technology. Courant Computer Science Rep. 12, Dep. of
Computer Science, New York Univ., New York, N.Y., Sept. 1977.

39. SCHWARTZ, J.T. On the "base form" of algorithms. SETL Newsl. 159, Dep. of Computer Science,
New York Univ., New York, N.Y., Nov. 1975.

40. SCHWARTZ, J.T. Optimization of very high level languages, parts I and II. Comput. Lang. I, 2-3
(1975), 161-218.

41. SCHWARTZ, J.T. On Programming: An Interim Report on the SETL Project, Installments I
and II. Courant Institute of Mathematical Sciences, New York Univ., New York, N.Y., 1974.

42. SCHWARTZ, J.T. Structureless programming, or the notion of "rubble," and the reduction of
programs to rubble. SETL Newsl. 135A, Dep. of Computer Science, New York Univ., New York,
N.Y., July 1974.

43. SHARIR, M. Some observations concerning formal differentiation of set theoretic expressions.
ACM Trans. Program. Lang. Syst. 4, 2 (Apr. 1982), 196-225.

44. SRIDHARAN, N. Private communication, 1980.
45. STANDISH, T., HARRIMAN, D., KIBLER, D., AND NEIGHBORS, J. The Irvine program transfor-

mation catalogue. Tech. Rep., Dep. of Information and Computer Science, Univ. of California,
Irvine, Irvine, Calif., Jan. 1976.

46. TARJAN, R.E. A unified approach to path problems. J. ACM28, 3 (July 1981), 577-593.
47. TENENBAUM, A. Type Determination for Very High Level Languages. Ph.D. dissertation, Dep.

of Computer Science, New York Univ., New York, N.Y., Oct. 1974; also in Courant Computer
Science Rep. 3, Dep. of Computer Science, New York Univ., New York, N.Y., Oct. 1974.

Received August 1980; revised November 1980 and January and March 1982; accepted March 1982

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

