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Abstract: This paper explores the technique of ‘strength reduction’ or ‘formal

differentation’ in a set theoretic context, as recently introduced by Earley. We give

pragmatic rules for the recognition and treatment of reasonably general cases in which

the optimization is applicable, and consider some of the problems which arise

in actually attempting to install this optimization as part of a compiling system.

1. Background.

Continued development of very high level languages depends in part on our ability

to recognize common major aspects of programming style as resulting from the application

of some standard technique of program improvement to an underlying program prototype.

A technique of program improvement that we are able to perceive as general can become the

basis for a general optimization method; and once this method is in hand, we can safely

write programs in relatively simple unoptimized forms, since their more complex optimized

forms will be seen as obvious improvements, derivable mechanically or semi-mechanically,

from these simple forms. An interesting new high level optimization of this form has

recently been described by Jay Earley [El]. This optimization was applied by Earley

to his proposed language VERS2 [E2]; but his ideas carry over easily to other set-

theoretic languages such as SETL.

Earley’s optimization technique, which he calls iterator inversion and which we

shall prefer to call formal differentation, generalizes the classical method of ‘reduction

in operator strength!, for which see [AI,CI,C2,KI-K5]. The basic formal idea of this

technique can be put as follows. Suppose that an expression C = f(xl, . . ..xn) will be

used repeatedly in a program region R, but that its calculation cannot be moved outside R

because its parameters Xl, . . ..x
n

are modified within R. If we make C available on

each entry to R (by calculating it before entry) and keep C available within R by

recalculating it each time one of its parameters is modified, then we may be able to avoid

all full calculations of C within R.

For this approach to be reasonable, there must be some way of recalculatin~ C more

easily after its parameters are modified than by calculating C afresh each time it is

required. For this to be the case, we are likely to require two conditions to be

satisfied, which we may describe heuristically as follows:

(a) Within R, all changes Xj = h(xl, . . ..xn) to the parameters Xj should all

be ‘minor! or ‘small! .

(b) For each such assignment, there should exist an update identity

f(xl, . . ..x. ~_l, h(xl,.., xn), xj+l,..., xn) ‘g(xl>.., xn), f(xl,.., xn))
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which allows the new value f ~TFhJ of f to be calculated from its old

‘easy! calculation f ~~~1 ❑ ~(xl!. ..,xn>foLD). If this is the case,

that the expression f is continuous in its ~arameters (relative to

occurring within R).

The application of this idea in the set-theoretic setting was

and has been pushed further by Fong and Unman [Fl ] who made

that formal differentiation in a set-theoretic setting could

asymptotic beh,avior of an algorithm and that this fact coluld

theoretical characterization of the situations in which this

discussion which follows, we shall pursue Earleyls idea

Fong and Unman, aiming to state pragmatic rules for the

reasonably general cases in which formal differentiation

2. Initial Examples.

value fold by an

then we sav

the modifications

initiated by Earley

the interesting observation

actually improve the

be used to develop a

techniaue applied. In the

in a less formal sense than

discovery and treatment of

can be applied.

In SETL the computations s ❑ s + {x} and s . s - {x} respectively add and delete

the value of the element x from the set s. Both operations change s only ‘slightly’.

Similarly, if s and t are sets and the number of elements of A, #A, is much smaller

than #s, then modifications of the form s ❑ s t A, represent ‘slight’ changes to s.

If f is a set of pairs used as a SFTL mapping, then the operation f(x) ❑ z, which

replaces all pairs whose first element is x by the pair <x,z> causes f to change

slightly. If f is a set of (n+l)-tuples used as a multi-parameter mapping, then the

indexed assignment f(xl ,. . . ,xn ) = z alters f only slightly. If in a strongly

connected region R all changes to variables which are sets or mappings are slight

modifications of the kind just described, then these variables can be called

induction variables within the region R.

Examples of SETL expressions continuous in all of their parameters are: set union

S+t, set intersection s * t, and set difference s - t. For example, if we consider the

expression s - t, then if s undergoes differential change s=stA, the value C of s-t

can be restored by executing the corresponding code,

(1) C . C+ (A - t), or C:C.A

Similarly, if t undergoes a small change t=t?A , we can update C by performing

(2) C ❑ C- A or C = C+ (A * s).

As Earley has emphasized, expressions involving set-formers provide more interesting

examples of this phenomenon of ‘continuity’. The SETL expression

(3) c.{xeslf(x)g Q}

which computes the set of all values of the set s such that the boolean valued

subexpression f(x) ~ q holds is a prototypical example. This expression is

continuous in s and f, but discontinuous in q. If s is varied slightly by s = s f A

then C can be updated by executing

(4) C ❑ C t {x= A j f(x) ~q}

which represents a small change to C. When f is changed by executing the indexed

assignment f(yO) ❑ z, then C can be updated by executing

(5) c . if yO e s t,hen C - (if f(y) ~ q then {yO} else nullset)

+ if z ~ q then {yO] else nullset;

just before the assignment f(yO) . z.
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3. Formal Differentiation of Set Theoretical Expressions Continuous in All of Their

Parameters.

We now formulate a few general rules concerning the formal differentiation of set

theoretical expressions continuous in all of their free parameters. It must be observed

that none of the transformations which we are studying can safely be applied to expres-

sions containing operations which cause side effects that’are used; for which reason we

shall always assume such operations to be absent in the expressions we treat. We also

assume that typefinding is applied prior to any attempt to optimize by formal differen-

tiation; so that object types are known during the analysis of a program for reduction.

Consider the set-theoretic expression

(1) C={x~sl K(x)}

in which K(x) is any boolean-valued subexpression containing only free occurrences of

the bound variable x, and containing no free instance of the set, s. Suppose that the

expression (1) is used in a strongly connected region R and that the following

conditions hold:

(i) The boolean valued subexpression K(x) contains m free occurrences of an

n-ary mapping f (in which each such occurrence has at least 1 parameter expression

involving x? the bound variable of the set former); all other free variables occurring

in K are loop invariant.

(ii) f and s are induction variables of R; i.e., inside R, s is only changed by

slight modifications of the form s ❑ s fA, where A is a small set in comparison with

s, and f is only changed by indexed assignments of the form

f(Y1,Y2, . . . ,Yn) = z.

Then we can formally differentiate the expression (1) in the region R. Let C be a

compiler-generated variable, to be associated with the value of the set former expres-

sion (l). We will say that C is available on exit from a program point p if C is

equal to the value which the expression (1) would have if evaluated immediately

after the statement at p is executed; C is available on entrance to D if C is

available on exit from all predecessor points of p. If C is available onentrance to p,

and if C is not available on exit from” p (which will happen when execution of the state-

ment at p changes the value of a parameter upon which the value of expression (1)

depends), then we say that C is sDoiled at P.

To differentiate the expression (1) within a strongly connected region R, we begin

by making it available on entrance to R. This is done by inserting the assignment

c ❑ {XG sIK(x)} into Rts initialization block. Then , at each point p inside R

where the value of the induction variables s or f can change, the value of C (which

could be spoiled at p) will be updated by inserting appropriate slight modifications

c ❑ c i cl,

exit from p

We sha:

expression

fragmentary

where Cl is a small set relative to C; this keeps C available after

1 now proceed systematically to discuss continuity properties of the

1) and associated update rules for C for two cases (illustrated by

examples in section 2 above): small changes in the set s, and changes to

f which result from an indexed assignment.

Rule 1 : Either before or after each occurrence in R of a small change to s,

s z s *A, we can insert the differential update operation

(2) C ❑ C i {x= A I K(x)}

which preserves the value of (1) in C.
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Rule 2: Suppose that the boolean subexpression K of (1) contains m free

o~currences of the n-ary mapping symbol f. Suppose also that these m occurrences

of f appear in r different terms,

f(P1 l(x),..., Pin(x)) 7f(P21(x), . ..!D2n (x) ), . . ..f(Prl (x)...., Pm(x)),

where p ij(x) represents the j-th parameter expression (involving x which is the

bound variable of the set former) of the i-th term. Then at each point p in R in

which the n–ary mapping f is changed slightly by an indexed assignment, make the

following program transformation:

Relative Position ~inal Code

P f(xl, . . ..yn) =2

Differentiated Code.

P-2 ❑ {x c s p,,(x) QY, L...’! Pin(x) avn Qr
‘2

. . . MD rl(x) w Y, ~...k Pm(x) EQYn }

p- 1 c ❑ C- {x~s21K(x)}

f(Y1, . . ..Yn) =ZP

p+ 1 C=C+ {x~s21K(x)}

It can be shown that rule 2 is a corollary of rule 1. To see this, consider the set

‘f. ❑ {<Pi~(x ), -.. ,Pin(x)>lx E ‘}. Let pi be the mapping whose domain is s and

wh~se value is pi(x) = ~pil(x) l.. .,Pin(x)> . Then for any n-tuple <Yl, . . ..yn>. we

have Pi-l(Y1, . . ..YI. ) = {x ~ slpil (x) Qyl &...& Pin(x) =Vn}. If

s changes by deletion of pi “(yl, . . ..yn). then Df changes by ~letion of the

n-tuple <yl, . . ..Yn>. Moreover if s is modified b$ deletion ofj~l pi -’(Y1, ,.. ,Yn),

then the n-tuple <yl, . . ..yn> is removed from the domain of all the f terms occurring

in (l). Next we observe that if C is available on entrance to p (i.e., is available just

prior to the modification to f by the indexed assignment f(yl, . . ..yn) ❑ z), and if
r

<y, ,.. .,Yn> ~ .:Df. just before point p, then the statement f(yl, . . ..yn) = z

does not causel~lsi&nificant change in any of the occurrences of fin (l). Consequently,

C is not spoiled by assignment f(yl, . . ..yn) = z and hence, it remains available.

Suppose now that in expression (1) C is available on entrance to the program point p.

Then we could proceed as follows: (1) at P-3, ~ut S2 equal to the set
r
u p.

-1
(Y, ,,. -.,Yn ); (2) at P-2 delete S2 from s; (3) at P-1 updatei=l 1

C in accordance with rule 1; (4) at p+l add S2 back to s; and (5) at P+2, use rule 1

again to update C. This would give us the following code:

P-3 ‘2 ❑ {Xes I P~~(x) ~Y~ ‘...& Pin(x) QYn

~... m Prl(x) Q YI &...& Pm(x) Q!cl Yn}

p-2s. s-s2

(3) P-1 c ❑ c- {X E S2 I K(x)]

P f(Y1, . . ..Yn) =2

p+ 1 s= S+s
2

p+2 C=C+{X=S21K(X)}
In this code C is not spoiled by the statement f(yl, . . ..yn) = Z. Hence, if C is

available on entrance to p-3, then by Rule 1 we know that C remains available on exit

from p+2. And now finally, since in (3) the value of the set s is the same before

D-2 as after p+l , and because s is not used between p-2 and P+I, the code (3) is ,

equivalent to that shown in Rule 2. The assumption that at least one of the parameters

in each f term in K involves x (the bound variable of the set former) will usually cause

the set S2 to be small in comparison with s. Then, by the continuity properties
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stated in Rule 1 , we can conclude that the modification to C appearing in Rule 2 is

small compared with the set C itself.

The code generated by Rule 2 can be improved by eliminating redundancies in the

expression $=s21 K(x)] which appears at locations p-1 and p+l. Suppose we know

that S2 . Ri, where R ,...,Rr are disjoint sets. Then {x GS2 I K(x)}i~l ~1
can be rewritten as U {x GRi I K(x)}. Suppose also that in each set

{X G Ri I K(x)} K(x) c~~lbe transformed (by elimination of redundant operations)

into an equivalent but easier-to-evaluate expression Ki(x). Then it may be

worthwhile to work with the partition $Ri} of S2 instead of S2 and to rewrite

{X c S2 I K(x)} as ~~l{x G Ri I Ki(x)} .

As an exarnp~e of this, observe that if we let

Ri ❑ {x G (s- ~;. Rk) I PiI(x) Q Y1 &...& Pin(x) Q yn}, where RO . 0,

‘hen ‘l ’.”.’Rr
;orm a partition of s2. Moreover, on the set Ri we can replace

the term f(pil (x) ,.. .,pin(x)) which appears in the expression K at location p-1

of the code generated by Rule 2 by f(yl, . . ..yn) (cf. (3) above). This can lead to

a version of line p-1 of (3) which is relatively easy to evaluate.

As an example of the redundancy elimination method just outlined, consider the

following example:

(4) c= {x Gslf(f(f(x+ 1) + l)) Q. f(f(x+ 1) + l)}.

Suppose that the mapping f is changed slightly by an indexed assignment, f(yo) = z

which occurs at a program point p. Then to update the value of (U) we proceed as

follows. First a partition RI, R2, R3 is computed. (Note that this is not

precisely the partition described above: rather, it arises from that partition by

a further formal transformation, which for simplicity we omit.) Observe that this

partition contains three sets because only three different f terms occur in the

boolean subexpression in (4): these are f(x+ 1), f(f(x+ 1) + 1), and

f(f(f(x+ 1) + l)). Since f(x + 1) is the only f term of (4) whose Parameter

expression involves no f term, we put R . {x=s I(x+ 1) QYO}. Since the
1

parameter part of f(f(x + 1) + 1) involves f(x + 1), we set

‘2
❑ {x= (S-RI) I f(x+ 1) + 1 QyO}

and similarly, we put

‘3
❑ {x e (s-(Rl UR2))I f(f(x+l) + 1) QyO}.

The code generated to update (4) is then as follows:

‘1
.{xEslx+laYo};

‘2 ‘
x G (S-RI) I f(x+l) +1 ~ YO};

R3 ❑

x E (s-(R, * R2)) I f(f(x+l) + 1) @lYO};

C ❑ C- {x= RI I f(f(f(yO) + 1)) ~f(f(yO) + 1)}

- {XC R2 I f(f(yO)) ~f(yO)}

- {x ~ R? I f(yO) Q YO} ;
.

f(yo) ❑ z;

C ❑ C+ {x= R , I r[rtz+l)) ~ f(3+l)}

+{x=R2 I f(z) -z} + {xc R31ZQYO);

AS noted by Earley, the method of formal differentiation which has been

described can be extended in a useful way to apply to various SETL expressions

that implicitly contain set formers. Among these are the forall iterator (i.e.,

(VX C s\K(x)) , block), the existential and universal quantifiers

(i.e., Ix=s I K(x) and VXGS I K(x) ), and the compound operator (i.e.

[<binop>: x G s I K(x)] e(x) ).
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To formally differentiate these expressions, we rewrite them by replacing the implicit

set former subpart, x= s I K(x), which they contain with x e {u e s I K(u)}.

The set former subex~ression thus ex~osed can then be differentiated usj.ng Rules 1 and 2.

Let us now consider more closelv the SETL compound operation

(5)
c1

= [bino~: x G Cl e(x) ,

an illustrative example of which [+: x G C] e(x) calculates the value ~ e(x).

In general, [binop: x ~ Cl e(x) means e(xl) bino~. ..binop e(xn)where Cx=c{x I’”” -’xn}”
For the general case in which the binary operation binoD has an appropriate inverse,

inverse binoD (e.g. arithmetic binary + with - as its inverse), we note that (5) is

continuous relative to slight changes in C; i.e. , before an occurrence of the code

C ❑ Cf A, Cl can be updated by an appropriate inexpensive change, either

(6)
c1 = Cl MQQ12[U: XG (A – C)] e(x);

or

(6’) Cl ❑ Cl inverse binop[binop:x (A*C)] e(x);

Applying the heuristic rule ‘continuous functions of continuous functions are continuous

to Cl of (5) and C of (1) yields update identities for a more general compound opera-

tion form

(7) C = [binoD: x c s I K(x)] e(x) .

In order to formally differentiate the expression (7) in a strongly connected region

R, we require all the conditions imposed on (1) to hold, and also require that neither

the set s nor the n-ary mapping symbol f occurring in K should appear in the subexpres-

sion e of (7). If all these conditions are met, we differentiate (7) by first making it

available on entrance to R. This is accomplished by inserting the assignment (7) into R’s

initialization block. Next, within R at each point p where C can be spoiled by modifi-

cations to the induction variables s or f, we can apply the following continuity rules

for (7) that parallel rules 1 and 2:

Rule 3: where s is modified in R by the code s ❑ s ? A, the value of (7) can

be maintained in C by executing

(7’) C = C binoD[binoD: x e (A - s) 1 K(x)] e(x)

or

(7”) C = C inverse binoD[binoD: x C A * slK(x)]e(~)

respectively.

A similar rule analogous to Rule 2 can be stated to cover the case of changes to f.

These rules imply continuity properties for many other high level SETL operations.

The counting operation applied to a set former; i.e., #{x G s I K(x)} can be treated as

[+: x~s I K(x)] 1. When side effects of the existential and universal quantifiers can

be ignored, then the corresponding SETL forms 3X ~ s I K(x) and ‘fx ~ s 1 K(x) can be

rewritten as [+: x= s I K(x)] 1 ~ O and [+: xesl@K(x)]l M O

respectively. Set inclusion (the predicate R ~ S) is continuous in both S and R since

in SETL, R ~ S can be handled as [+: x= s I x notin R] 1 ~ O.
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4. Differentiation of Set-Formers Containing Parameters on which They De~end

Discontinuously.

Most SETL expressions will not be continuous in all the parameters on which they

depend. For example, the set former

(1)

is continuous in s and

that the expression (1

all changes to s and f

that q can take inside

following general form:

(a) define a map C(q)

to R;

c. {x~slf(x,q)aq}

f, but it is discontinuous relative to changes in q. Suppose

occurs in a strongly connected region R, and suppose also that

are slight within R. Then if we know the set D
q

of all values

R, the computation (1) can be removed from R according to the

1 differentiation scheme:

= {x~s I f(x,q) Q q} for all values q ~ Dq on entrance

(b) whenever differential changes to s or f occur in R, modify each stored set C(a)

according to rules 1 and 2 (cf. section 3) for all values q ~ D ; e.g. after
Q

s . s + A we can perform the following update code:

(~q GDq) C(q) ❑ C(q) f {X~ A I f(x,q) ~q};

(c) whenever q changes in R nothing more is needed;

(d) replace all computations (1) in R by C(q).

Three major problems can easily make this approach infeasible:

(a) storage of all the sets C(q) may be too expensive;

(b) updating all the sets C(q) when a parameter upon which C depends continuous

modified may waste more time than is saved by avoiding the calculation of C

(c) storage of the set Dq may be too expensive.

Nevertheless, these problems can be overcome in cases in which we know that when

y is

an

expression E must be stored as a map, the map will be continuous relative to differential

changes in the ,continuity parameters of E (i.e., update operations are only required ove

a small part of the domain of the map). Fortunately, this property holds for a few

special cases of common occurrence in SETL programs. One such example is

(2) c1
.{xeslf(x)Qq}

If, on entrance to R, Cl is stored as a map Cl(q) defined on Dg, and if

s and f are induction variables of R, then (2) can be differentiated profitably.

After the occurrence of s . s + A , we can invoke the update rule

(3) (Vx 6 A I f(x) ~Dq) Cl (f(x)) = Cl (f(X)) * {X};;

Whenever the indexed assignment f(xo) . z occurs, the following inexpensive code

can be executed:

(4) if X. c s ~ f(xo) ~ Dq then Cl(f(xO)) = Cl(f(xO_)) - {Xo];;

f(xo) ❑ z;

if x o G s ~ f(xO) ~ Dq then Cl(f(xO)) = Cl(f(xO)) + {xO};;

Example (2) above typifies the treatment of a somewhat broader class of expressions

that can often be differentiated profitably. Within this class we consider the set

formers

(5) C={X~s I K1(x)~K2(q 1,. ..,qt)] ,

where ql, . . ..qt are free variables upon which C depends discontinuously, We assume

that K, of (5) is a subexpression only involving x, parameters upon which (5) depends

continuously, and maps fi upon which C can depend discontinuously but whose occurrences

in K ~ all have parameters depending on x. K2 of (5) is assumed to be a subexpression

only involving the parameters ql ,. . . ,qt on which C depends discontinuously, and
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also the maps fi.

We assume that expressions estimating DQ ,...

“?time or are computed dynamically and are aval able

(5) by substituting a new free variable b for K~(cI

and keep the value C . C(b) available for every va

The preceding results aD~ly in an interesting

typified by

(6) c = {x E s I f(x) ccl} ,

D are either available at compile
Qt

on entrance to R. We can simplify

,.. .,at); then we compute Db

ueb~D
b“

way to a class of set formers

where the free variable q is a set. Recall from section 3 that (6) is continuous

relative to small chan~es in s and relative to indexed assignments to f. If a is

changed by a computation Q ❑ q t cl, where #al << #a , then the corresponding update

correction

(7) C ❑ C f {x’= S I f(X) c Ql}

will often represent a small change to C. However, because the set

requires an iteration over s, this update computation will often be

allow profitable differentiation of (6).

former in (7) still

too expensive to

For this reason, it is appropriate in handling (6) to use the identity

{x~s/f(x)~ql}=b& {x=slf(x)~b].

The sets C’ = {x G s I f(x) w b} whi~h then appear can be treated by the methods

sketched earlier in the present section, which require that we store a map C’(b) for

all b in an appropriate domain set Db. Then the u~date operation (7) can be replaced

by the less expensive code

(8) c ❑ c t [+: b~ql] C’(b) .

Set formers involving boolean valued subexpressions involving comparison operations

such as

(9) c1
={xeslf(x) <a]

can sometimes be treated as special cases of (6). To see this, let M be the largest q

value that needs to be considered, and let m be the minimum value of {f(x), x G s} over

all f and s that can appear. Putting sa . {b, m ~ b < q}, we see that (9) is

equivalent to {x ~ s I f(x) ~ sq}.

If q changes slightly by q . q t ql , then sq changes, also slightly, by

sq ❑ sq + {b, q< b < q + al}

or by

Sq ❑ sq- {b, q-ql<b~q}.

Thus to update Cl we can simply execute

(lo)
c1

❑ c1 + [+: q ~ b < q + al] C’(b)

or

c1
❑ c1 -[+:q- ql < b < q] C’(b)

as appropriate.

Another class of special cases derives from

(11) c = {x= s [ c1 = f(x)}

a set former which despite its close resemblance to (6) must be handled very

differently. Whereas (6) is continuous in all of its parameters, (11) is discontinuous
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in q. Thus we must save the value of C in a map C(q) defined for all values q

Applying Rule 1 of the last section to (11) we derive the update computation

(12) (VQ~ Dq) C(q) ❑ C(q) * {x= A I q= f(x)};.

When D is small, (12) can be expected to be inexpensive. When Dq is large, we
q

wish to extend the iteration (12) not over all of Da but only over the smaller

(13) C’={q~Dql (3x~Al q’~ f(x))}

which can be rewritten equivalently as

(14) c’ ❑ [+: xeA]f(x)*D
q“

5. A Few Preliminary Remarks on Im~lementation

To implement formal differentiation rules sketched in the preceding pages,

may

set

we will

need to perform the following steps:

(1) Develop an algorithm which, given parsed SETL code P plus possible additional

information including use definition chains, type analysis, declarations describing

the relative sizes of sets and maps, etc., finds all the expressions E = E(xl, . . ..xn)

in P which can profitably be formally differentiated.

(2) Formalize rules (as we began to do in sections 3 and 4) for updating all basic

differentiable forms of SETL expressions.

(3) program the transformations (of parsed code P) which apply these update rules

in several possible ways, one of which is not to apply them at all. These

transformations must in effect match nonelementary SETL expressions to basic elementary

patterns, and must then carry out appropriate ‘symbolic calculations’ .

To avoid involvement with unprofitable cases, we suggest the following heuristic:

differentiate an expression E . I?(x1,

(a) it is continuous in all the

region R; or

(b) it is discontinuous in some

ed to store its values is continuous :

. . ,xn) only if either

parameters changed within some strongly connected

parameters which vary within R but the map ~ need-

n all the parameters x: in which E is continuous;

i.e., only a few values of ~ need to be changed when Xj is c~anged slightly (recall the

discussion of objectins (a) and (b) of the previous section). Since the transformations

which are actually applied will leave behind large numbers of expressions which can be

simplified very greatly by the application of constant folding, dead code and redundant

expression elimination, etc. , it is important to incorporate these cleanup optimizations

into any formal differentiation scheme.

(4) Select the most profitable of the program versions which result from

application of the transformations (3). In the next section some of our implementation

ideas will appear implicitly in our manual optimization of a simple program.
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6. How Automatically Can Formal Differentiation be AD plied?

Study of an Example.

To come to terms with the above question we consider a simple example -- Knuth’s

Topological Sort (this example is also studied in Earley, OD. cit.). The input assumed

by this algorithm is a set s and a set of pairs SD representing an irreflexive

transitive relation defined on s; as output, it produces a tuple t in which the elements

of s are arranged in a total order consistent with the partial order SD. A concise SETL

form of the algorithm is as follows:

(1) t = nultuple;

(while ga ~ s \ sp{a} * s ~ nullset)

t . t + <a>; /* tuple concatenation */

s = s – {a};

end while;

The while loop L of (1) contains only one nonembedded expression which is not already

in a ‘most reduced’ form such as might be found in a table of such forms. This is the

existential quantifier

(2) 3a es I sp{a} * s~nullset

Since use-definition analysis will reveal that a, the bound variable of the quantifier,

is used within L, we transform (2) into

(3) qa C {x ~ s I sp{a} * s ~ nullset}.

This prepares for an attempt to differentiate the set former expression

{x e s I sp{a} * s w nullset},whose value we will call ZRCOUNT. The elementary

pattern describing ZRCOUNT is {x ~ sIK(x)}, where K(x) is the subexpression

SP{X} * s Q nullset. In ZRCOUNT s is already in a reduced form. Thus, to reduce the

expression ZRCOUNT, we must reduce its subexpression K(x). To reduce K(x) we first

rewrite it as ((sp{x} * s) S nullset)& (nullset s (sp{x} * s)),

which simplifies to (SP{X} * s) S nullset. This last expression is in turn

transformed into [+: y G (SD{X] * s) I @ y G nullset] 1 eQ O, and then again into

[+: y G Sp{x} * s] 1 g o. To reduce integer equalities, we will always require

that both arguments of ~ be reducible. The parameter O of the preceding

expression is elementary; the second parameter K2 . [+:y G SP{X} * S1 1 of

the immediately preceding equality is reducible only if the subexpression

K3 ❑ SP{X} * S is reducible. We observe that K3 is continuous with respect to

the induction variable s but not with respect to x or SP. However, SP is a region

constant of L, and hence, K3 can be reduced to a map :3(x) depending onlY on

the single discontinuity parameter x. Furthermore ~3 is continuous relative to

small changes in s; i.e. , at each small change s = s k A , K
3

can be

executing the code

(4) (Vy = [+: X = A] SUCC(X)) ~3(y) = ~2(y) f Sp{y} * A;;

where Succ(x) = {y = s I x e sP{y?} is an auxiliary map introduced

the general differentiation rules sketched in the preceding pages.

updated by

when we apply

On,ce this transformation has been applied to K3 , we can go back and attempt

to differentiate the expression K2 . [+: y eY3(x)l 1 which led us to consideration

of K
3.

The expression K2 is discontinuous with respect to changes to x and inde’xed

assignments to ~3, but continuous (cf. Rule 3 of section 3) with respect. to

differential changes to each set ~3(x). Thus K2 can be reduced to a map~”2(x)

(defined over all x G s) depending only on the discontinuity parameter x. The
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update rules which must be applied to ~2(y) when R3(Y) ❑ Tq(y) f A is executed

are respectively as follows:
.,

(5) X2(Y) ❑ ~2(Y) + [+: We (A - 13(Y))] 1

and K2(Y) = Y2(Y) - [+: wc (A* K3(Y))I 1

Since ~3 P lays no direct but only a subsidiary role in our calculations, we can

eliminate it by combining update rules (4) and (5). This leads to the following

update rule for K2, which we shall henceforward call by the more heuristic name

COUNT:

(6) (Yy G [+: x G A] succ(x) )COUNT(y)=COUNT(y )-[+: W = (sP{Y}*A*s)] 1;;

Here ~ is as in(4) above. Note that u depends continuously

on s, and that by applying the general rules of section 3 we see that succ is to be

updated after s = s - A by executing

(7) (Vb~ [+: x ~ Al sP{x} * s) succ(b) = succ(b) - {x ~ AIx ● sP{x}}; ;

Once COUNT is reduced, we can reduce ZRCOUNT . {x G SI COUNT(x) QI 0)

by immediate application of Rules 1 and 2 of section 3; this eliminates the auxiliary

map ~ Combining all these transformations and applying appropriate cleanuP, we obtai

the following much improved form of the topological sort (1)

t = nultuple;

(Va~ s) COUNT(a) ❑ [+: y~ sp{a} * s] 1;

succ(a)

ZRCOUNT ❑ {X

(while qa~

t=t+

={ye s [ a=sp{y}}; ;

e s I COUNT(x) ELI O};

ZRCOUNT)

<a>;

(8) (’dy~ succ(a)) COUNT(y) = COUNT(y) - [+: we (sp{y} * {a}%S)] 1;

ZRCOUNT . ZRCOUNT + U COUNT(Y) w O -{Y] ~ nullset; ;

s . s - {a};

(9) (Vb~ sp{a} * s) succ(b) = succ(b) - {x= {a} I x= sp{x}}; ;

(lo) ZRCOUNT = ZRCOUNT - {XG {a] lCOUNT(X) ~ o};

end while”—— ,

A very good optimizer might determine that the expression

[+: w= (sp{y} * {al * s)] 1 of (8)

is just that the constant 1 , that sp{a} * s of (9) is nullset, and that

{x e {a} ICOUNT(X) ~ O} of (10) is simply {a}. Also, s can be eliminated as a

dead variable inside L. With these improvements, a final version of the topological

sort could be written as follows:

t = nultuple;

(Va G s) COUNT(a) = [+: y G sp{a} * s] 1;

succ(a) . {y = s I a ~ sp{y}}; ;

ZRCOUNT = {X ~ S I COUNT(x) ~ 0];

(while la ~ ZRCOUNT)

t ❑ t + <a>;

(Yy G succ(a)) COUNT(y) = COUNT(y) - 1;

ZRCOUNT . ZRCOUNT + IF COUNT(y) ~ O then {y} else nullset; ;

ZRCOUNT = ZRCOUNT - {al;

end while;

This final version of the topological sort algorithm will run in a number of cycle

proportional to the number ~ of elements in the map ~. The original form (1)
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of the algorithm will require somethinsz like ~ * (11~) * (~1~) cycles,

which can be much larger. However, the chain of symbolic transformations which leads

from (1) to (4) is Quite long, and it appears doubtful that an automatic optimizer will

be able to traverse this chain unguided, especially since in this case, and still more

so in more general cases, there exist competing transformations whose application an

automatic system would have to consider. However, it may be practical to design a semi-

automatic system, whose user may interactively signify that he wishes a particular

subexpression of a program to be differentiated in one of several possible ways. This

may make it possible to deri~e efficient program versions with more certainty a~d less

labor than would be typical if the final program version had to be worked out in an

entirely manual way.

7. @nclusion

Work is currently in progress to produce working SETL algorithms that generalize

and realize the techniques sketched in the preceding pages. Algorithms which perform

auxiliary functions such as preparatory or cleanup transformations are being studied.

We expect cleanup to be a major problem. Our goal is to implement formal differentiation

as a semi-manual extension of the optimized SETL system currently under development at

N.Y.U. [El, B2, Sch3, Stl, St2].

Formal differentiation has great potential for transforming very high level code

to reasonably efficient low level code. As a SETL to SETL optimization it works best

when a SETL pro~ram is written in a very
*

‘high’ style (in which iterative operations

abound) . The result of formal differentiation is then highly efficient low style SETL.

As is pointed out in [Sch2], program validation can be expected to apply most easily to

very high level programs since the required correctness proofs can be expected to be

shorter.

*—
In this regard, see the remarks in [Ll], regarding a simpler experiment on

source-to-source transformation in SETL.
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