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ABSTRACT
We describe a highly practical program specializer for Java
programs. The specializer is powerful, because it specializes
optimistically, using (potentially transient) constants in the
heap; it is precise, because it specializes using data struc-
tures that are only partially invariant; it is deployable, be-
cause it is hidden in a JIT compiler and does not require
any user annotations or offline preprocessing; it is simple,
because it uses existing JIT compiler ingredients; and it is
fast, because it specializes programs in under 1s.

These properties are the result of (1) a new algorithm
for selecting specializable code fragments, based on a notion
of influence; (2) a precise store profile for identifying con-
stant heap locations; and (3) an efficient invalidation mecha-
nism for monitoring optimistic assumptions about heap con-
stants. Our implementation of the specializer in the Jikes
RVM has low overhead, selects specialization points that
would be chosen manually, and produces speedups ranging
from a factor of 1.2 to 6.4, comparable with annotation-
guided specializers.

Categories and Subject Descriptors
D.3.m [Programming Languages]: Miscellaneous

General Terms
Algorithms, Languages, Performance

Keywords
Dynamic optimization, partial evaluation, program analysis,
specialization

1. INTRODUCTION
Many virtual machines employ dynamic optimization, a

technique that exploits the particular execution and mem-
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ory behavior of each program run to produce optimizations
tailored to that run. Specialization, or partial evaluation, is
a related, more aggressive strategy by which hot portions
of code are heavily optimized by “hard-coding” frequently
occurring values, and other values that depend on them, di-
rectly into the instruction stream; when these values turn
up again, the optimized code is invoked [2, 8, 13, 14, 17, 21,
22, 26, 28, 31, 35, 36, 43, 44, 45]. For certain classes of pro-
grams, such as interpreters, raytracers, and database query
executors, in which a few popular values consistently dictate
execution behavior, employing this technique can result in
marked speedups, up to 5x in some cases [23].

Powerful specialization techniques have eluded inclusion
in transparent dynamic optimization systems, such as Java
VMs, since existing specializers are staged : while they gen-
erate specialized code at runtime, they require an offline
component of programmer annotation [14, 21, 31], or heavy-
weight program analysis [35]. This offline step forces staged
specializers to abstract away from the concrete state of a
particular program run, and employ only those specializa-
tion optimizations that apply to all executions of a program.

This paper presents a program specialization technique
that is able to exploit the unique opportunities offered by dy-
namic optimizers, in particular access to the concrete mem-
ory state and execution behavior of a program. This spe-
cialization technique has the following novel combination of
properties:

• It rapidly and automatically identifies specialization re-
gions. The specializer uses profile information with
a novel linear-time algorithm based on a new notion
of instruction influence to identify good specialization
opportunities. The use of concrete execution behavior
has the additional advantage of enabling specialization
of the same function in different ways based on the ex-
ecution pattern of a given program run.

• It employs optimistic and precise automatic heap anal-
ysis. The analysis exploits specialization opportunities
that may not be easily detectable or annotatable in the
source code, for instance data that is only invariant
for certain program executions or in certain execution
states, or constants as small as individual array ele-
ments.

• It automatically monitors optimistic assumptions, and
invalidates specialized regions if any of their assump-
tions are violated. The specializer employs a low-overhead



invalidation system that (a) detects when assumed con-
stants have been updated and then (b) safely inval-
idates the corresponding specialized regions, even if
they are currently on the execution stack.

These three features enable the specializer to operate fully
transparently at runtime: it requires no additional user in-
put or other information. This transparency increases its
ease of use: an end-user with a dynamic specialization-
enabled runtime environment like a JVM can instantly reap
its benefits on all of the specializable programs she runs, in-
stead of hoping that developers will annotate each program
individually with specialization directions. Even systems
such as Calpa [35], a staged specializer that automatically
infers annotations, require an off-line phase that a user may
be unwilling or unable to perform. Additionally, the use of
annotations means that such specializers cannot take advan-
tage of per-execution runtime constants and behavior.

To the best of our knowledge, the system presented in
this paper is the first fully transparent specializer to use
heap data. Suganuma et al. [45] have constructed a fully
dynamic specializer, but unlike existing staged specializers,
it does not utilize any heap constants (perhaps the most
valuable pieces of runtime information) and so its speedups
do not exceed 1.06x. In the rest of the paper, when we refer
to other specializers, we mean heap-aware specializers.

A strong motivation for this technology is that the mas-
sive popularity of scripting languages makes interpreter op-
timization a compelling goal. Application languages like
Visual Basic and Tcl, web languages like JavaScript and
VBScript, and general-purpose languages like Perl, Python,
and Ruby, all have very large user bases. In addition, there
are countless special-purpose languages that have significant
followings in their niche areas. Given the success of these
languages, new languages are constantly being developed,
and they need frameworks in which to run.

Interpreters have a number of advantages over compilers
in providing such a framework: (1) writing an interpreter is
much simpler than writing a compiler (and in many cases,
such as in languages with “eval” functionality, a true com-
piler is infeasible); (2) it is generally much easier to verify
an interpreter as correct; (3) it is easier to distribute an
interpreter because there are fewer portability issues. As
a result, most scripting languages are initially interpreted,
and later, if there is sufficient demand for improved perfor-
mance, a compiler may be painstakingly created. Dynamic
specialization can provide an immediate level of optimiza-
tion to interpreted code, reducing development time and
making the use of new languages more appealing. By using
concrete heap information, a dynamic specializer can also
take advantage of constants induced by the interpreted pro-
gram, rather than just those present in the interpreter, a
level of optimization unavailable to existing staged special-
izers: it can not only specialize the interpreter, but also the
program the interpreter is running.

Our primary contributions are:

• Fast identification of good specialization points via a
new influence metric.

• Optimistic and accurate fine-grained detection of heap
invariants by a store profile, and its use in specializa-
tion.

• An automatic mechanism for invalidating specialized
regions when assumed heap constants are modified.

• An implementation of this system that runs transpar-
ently and with low overhead on the Jikes RVM and
produces speedups of 1.2x to 6.4x.

This paper is organized as follows. Section 2 is an overview
of the system, and presents three main challenges of dynamic
specialization: region selection, heap invariance detection,
and invalidation. Sections 3, 4, and 5 discuss our solutions
to the three principle challenges, and Section 6 describes
some details about region creation. Finally, we present an
experimental evaluation of our work in Section 7. Related
work is discussed in Section 8.

2. OVERVIEW
In this section, we describe the specialization procedure,

discuss three critical problems that must be solved to imple-
ment it in a dynamic framework, and illustrate the process
with an example.

2.1 Specialization Model
Classical specialization is applied in scenarios in which

a program P is re-executed with a part of its input un-
changed [27]. Technically, the input to P is divided into
a static input s and a dynamic input d, where the former
remains fixed across executions while the latter is uncon-
strained. For example, when specializing an interpeter P ,
the static input s is the program being interpreted and the
dynamic input d is the input to the interpreted program.
Since the static input s is fixed, computations that depend
only on s produce identical outcomes in each of the execu-
tions. Specialization removes this redundant computation
by specializing P with respect s. The specialized program
Ps is obtained by evaluating (some) instructions that depend
on s but not on d and residualizing remaining instructions.
Executing the specialized program Ps on the dynamic input
then yields the desired output, formally Ps(d) = P (s, d).

The computation that is “specialized away” may represent
a significant portion of the original computation. For exam-
ple, when specializing an interpreter P with respect to the
program s being interpreted, the specialized interpreter may
omit the entire interpretive overhead, producing a compiled
version of s.

In practice, deployment of specialization differs from the
scenario described above, either because programs are rarely
executed with a part of their input fixed or because the static
input is tedious to identify. In order to apply specializa-
tion to programs that are not reexecuted, pratical special-
izers identify fragments of the program that are reexecuted
with same (static) inputs in the course of the execution.
(In Tempo [13] and DyC [21], these fragments are syntactic
code blocks, e.g., procedures and loops.) A given fragment
can be specialized for multiple values of its static input, in
which case a run-time dispatch selects the appropriate spe-
cialized version of the fragment (or its original, unspecialized
version) each time the program is about to execute the frag-
ment. In this “fragment-based” version of specialization, it
helps to distinguish two kinds of static inputs: arguments,
which are passed to the fragment by value; and heap inputs,
which are obtained from the heap. In many specializers, in-
cluding ours, the dispatch mechanism handles the two kinds
of inputs differently. It turns out that it is heap input that
delivers powerful specialization capable of eliminating safety
checks. For example, an array-bounds check can be special-



ized away because the array length is a static input obtained
from the heap.

Our specializer differs from this standard model in two
ways. First, we simplify the specialization process by rely-
ing on fragments that are (dynamic) execution traces rather
than (static) syntactic code blocks. Traces are simpler to
work with because they are free of control flow merges. Sec-
ond, in order to exploit static input from the heap while
keeping the dispatch simple, we optimistically assume that
the heap locations used as static inputs are not modified
after specialization. As a result, the dispatch needs to ex-
amine only the arguments, rather than also checking the
heap inputs or relying on external guarantees that they are
static. The optimistic assumption is inexpensively verified
on the fly, by monitoring stores into the heap locations.

The combination of these two features yields a very sim-
ple yet suprisingly powerful specializer. The simplicity is
the result of online specialization (i.e., specialization with-
out binding-time analysis) [39] that is further simplified by
specializing traces created in the spirit of the Dynamo spe-
cializer [9]. At a high level, our process is to interrupt an
execution at a suitable program point and form a trace by
following a hot execution path. While forming the trace,
we evaluate all statements depending only on the static ar-
guments of the trace and on static heap locations. Instruc-
tions that cannot be evaluated are emitted to the specialized
trace. The power is gained by the access to run-time values
in the heap, and by optimistically exploiting heap locations
that may eventually be overwritten, which enables special-
ization that would be illegal or very difficult to verify if one
conservatively required invariance of these locations.

We decompose this process into solving three key prob-
lems:

• What is a suitable program point to start a benefi-
cially specializable trace, and what are suitable static
arguments to this trace?

• Which heap locations should be assumed to be con-
stant?

• How to detect if the heap locations used as static in-
puts have been modified, and if so, how to invalidate
any specialized traces that depend on them?

We outline our solutions below. The rest of this section
elaborates.

Identifying profitable specializable traces. To
make the problem manageable, we establish a (mild) re-
striction that the specialized trace has only one static argu-
ment input (it can have an arbitrary number of static heap
inputs). Under this restriction, the problem boils down to
identifying an instruction whose result value would be a suit-
able static argument input; this instruction will form the
start of the trace. Given the start point, the trace is formed
by following the execution; this process terminates when a
benefit function decides that specializing further appears no
longer profitable, due to the ratio of instructions that are
currently being specialized away (see Section 6).

To identify suitable trace start points, we have developed
a metric called influence that estimates the benefit of spe-
cialization when a given instruction would serve as the static
input. Influence over-approximates the size of the forward
dynamic slice of the candidate instruction, which itself over-
approximates the benefit (see Section 3). The metric is used

Figure 1: A program to be specialized: a simple inter-

preter (left) and the set of bytecodes it is to interpret

(right).

to identify a few candidate instructions, which are then ten-
tatively specialized to a limited degree, and the most promis-
ing candidate is selected as the trace start point. Our mea-
surements show that the influence metric is fast enough for
a runtime environment.

Identifying constant heap values. We identify lo-
cations unlikely to be overwritten by means of a form of
value profile called a store profile. The store profile predicts
whether a memory address is a likely constant by remem-
bering (a sample of) addresses written by the program (see
Section 4). We have found this profile to be sufficiently
accurate. Since the store profile monitors individual con-
crete locations, its invariance detection is generally more
precise than a static analysis working with a heap abstrac-
tion. Section 4.1 further discusses properties of the store
profile. Thanks to recent advances in sampling-based profil-
ing, the store profile can be collected with high accuracy, yet
with overheads sufficiently low for dynamic optimizers [6, 11,
15, 25, 33, 41].

Invalidating optimistic specializations. Since the
specializer cannot be sure that the memory locations that it
assumes are constant will not change, it must ensure that if
these locations are updated, specialized traces that rely on
them are invalidated. We detect the invalidation of assumed
invariants with write barriers, greatly optimized by relying
on Java’s type safety; overhead is generally well under 10%.
Invalidation can occur even while the specialized code is be-
ing executed. We describe this system in Section 5.

2.2 Example
In this section, we illustrate the specialization procedure

with a specific example. Figures 1 and 2 show a simplified
interpreter before and after specialization. The interpreter
is given an array of bytecodes, which it executes in turn,
using a program counter pc to keep track of the current
bytecode. We show only two bytecode types, ADD, which
adds two values and increments pc, and BGE, which compares
two values. During execution, a light-weight method profiler
identifies the interpreter function as a hot method, and the
specializer is invoked to assess the method for specialization
potential.

It runs the influence algorithm, described in Section 3,
on the function and its associated dynamic execution infor-
mation. The algorithm estimates the number of dynamic
instructions that will follow each instruction in the func-
tion and selects those with the most following instructions:



Figure 2: The interpreter in its specialized incarnation.

The two shaded columns are specialized traces, while the

diamond on the right is the original code.

the assignment to i, the switch, and the assignment to pc.
These candidates are then tentatively specialized to a lim-
ited degree to gauge their effectiveness.

The candidate instruction that results in the best opti-
mization opportunties turns out to be the assignment to
pc. (If no candidate instructions revealed good optimization
opportunities, the specializer would abort at this point.) A
hot value profile, described in Section 7.1, indicates that the
hottest values of this instruction are 0 and 2.

Based on these hot values of pc, the specializer (i) creates
two traces, one for each of these values, and (ii) a dispatcher
that jumps to the corresponding trace or falls back to the
original code as appropriate; see Figure 2.

We will now walk through the creation of these traces,
starting with hot value 0. Given the starting program point
p that assigns 0 to pc, the specializer performs standard con-
stant propagation starting from p, with a few modifications:
(i) it assumes pc is a constant equal to 0; (ii) it unrolls loops
where appropriate; (iii) it evaluates load instructions on the
concrete memory state of the program at the time of spe-
cialization, queries the store profile (detailed in Section 4) to
see if the loads are of constant values, and eliminates them
if so.

In our example, the constant propagator proceeds to the
next instruction, i = bytecodes[pc]. The value of pc is
now assumed to be 0, and the store profile indicates that
bytecodes[0] is constant, so this load is eliminated (along
with its associated null check and bounds check), and the
contents of the fetched bytecode (stored in i) are themselves
propagated further as constants.

The next instruction, the switch, is a branch. The spe-
cializer handles branches in two ways. If the predicate can
be fully evaluated (i.e. all of its terms are constants known
by the propagator at the time of specialization) then the
branch is eliminated and the correct path is followed. If
not, the specializer uses an edge profile to determine the
most likely branch outcome, inserting a failsafe check to the
other branch.

In our example, since i is known to be ADD r2,r0,r1, the
branch is eliminated and the specializer proceeds to the ADD

basic block (2). In this block, several loads and null checks
are eliminated since i is known. The pointer field r is a heap

constant (it always points to the same array of “registers”),
so its array size is inlined and several bounds checks are also
eliminated. Furthermore, the store profile indicates that
r[0] (corresponding to the interpreted program’s register
r0) is a heap constant with value 1, and so its load is elim-
inated as well. In total, the specialized interpreter requires
only five instructions and one load to process this bytecode,
whereas the unspecialized interpreter took 20 instructions,
including seven explicit loads.

However, the specializer has made optimistic assumptions
via the store profile about the invariance of several heap lo-
cations: the interpreter’s r field, the instruction at bytecode[0],
and the value at r[0]. The elimination of their correspond-
ing load instructions is safe only until these values are mod-
ified; thus the specializer must now monitor them for up-
dates, as described below.

The following ADD block is automatically appended to the
trace in a similar fashion, since the value of pc is known
and propagated. Unrolling could continue further, but since
there is already a trace being developed for the same con-
stant values, the traces are linked together (3), eliminating
the need for further code generation or an additional dis-
patch on subsequent executions.

The second trace, specialized for pc = 2, begins with a
BGE (4). It normally would require a jump (as in Figure 1)
conditioned on the values of two heap locations, but the
profiler identifies these locations as constants. Based on
the two constant values, the conditional evaluates to the
false (fall-through) block, all unnecessary instructions are
eliminated, and unrolling continues.

After specializing an additional ADD instruction, the spe-
cializer reaches the BGE at bytecode index 4. It is unable
to fully evaluate the predicate, since r[4] is not a constant.
Thus, it consults an edge profile and determines that the
true branch (the one that performs the jump) is most likely
to be taken. It turns out that this branch sets pc = 1, and
there is already a specialized block with the same set of con-
stant values, so rather than generating new code, the spe-
cializer issues a jump linking the two specialized blocks to-
gether. Since the specializer cannot be sure that this branch
will actually be taken every time, a failsafe jump to the cor-
responding point in the unspecialized code is inserted as well
(5).

At this point, both specialized traces have terminated via
trace linking. Traces can also end when too few instructions
are being optimized away, or too many successive speculative
branch decisions are made to the point that the probability
that the code being generated actually gets executed is too
low.

The specializer must ensure that the assumptions it made
about particular heap locations being invariant hold. Thus,
it inserts write barriers at memory store instructions indi-
cated by the type system and address information. For in-
stance, to track an update to r[0], a write barrier need not
be inserted at the store to r[3] in the first specialized ADD

block, since it is guaranteed to write to a different memory
location. This procedure is described in detail in Section 5.

Finally, the specialized traces are compiled down to ma-
chine code and inserted into the execution stream.

Implementation. The entire specialization process runs
completely independently from program execution to execu-
tion. Our dynamic specializer is implemented in the Jikes
RVM Java virtual machine [18]. It leverages Jikes’s solutions



to many common issues involved in the general dynamic
optimization problem, such as an efficient sampling-based
profiling infrastructure, fast and efficient code generation,
identification of hot methods, and on-stack replacement of
recompiled methods [4, 5, 19], so we do not address these
issues in this paper.

3. DETERMINING SPECIALIZED REGIONS:
INFLUENCE

Our dynamic specializer creates a specialized trace by
stopping the execution of a function at a dispatch instruc-
tion i, and then adding subsequent instructions to the trace
until an end condition is met. The length and benefit of a
trace is largely dependent on the dispatch instruction, and
in this section we discuss our method for selected a good
one. The end conditions are described in Section 6.

A simple algorithm for finding a good dispatch instruction
is to simulate the specialization procedure on each instruc-
tion in the function without generating any actual code,
and choose the one that results in the greatest optimiza-
tion opportunity. In a runtime context, this approach is
prohibitively costly for larger functions, since the special-
izer may have to be run on hundreds of instructions before
selecting just one for which to generate code.

Thus, our specializer considers a small number of candi-
date instructions (in our implementation, five), tentatively
specializes each of them to a limited degree, and selects the
most beneficial one. If no beneficial dispatch points are
found, specialization is aborted.

The challenge arises in designing an efficient metric that
consistently selects good candidates for tentative specializa-
tion without actually having to specialize them itself. Below,
we describe several simple heuristics we tried that failed to
work. We then present a better technique, influence, that
does work.

Execution frequency. Instructions are ordered by a
combination of execution frequency and hot value consis-
tency, the cumulative frequency of their ten most frequent
values. The idea is that the specialized traces of this metric’s
highest-ranked instructions will be executed very frequently.
This approach fails because cold instructions (for instance,
outside of a loop) can start beneficial traces that span mul-
tiple loop iterations, whereas traces from hot instructions
inside loops often are limited to a single loop iteration.

First-n. Another heuristic that has limited success is
based on the observation that function arguments or early
values computed from them often make good dispatch points.
The First-n heuristc simply suggests the first n instruc-
tions in a breadth-first traversal of the CFG. However, this
heuristic also overlooks suitable instructions that precede
backedges further down in the CFG. For instance, the pc =

newpc instruction in Figure 1 would not be ranked highly by
this heuristic, even though it greatly affects the execution of
the program.

Control-flow domination. Instructions are ordered by
the number of instructions in the control-flow graph they
dominate; the idea is that these instructions at least have
the potential to affect many others. This approach is also
inaccurate because the optimal dispatch point may domi-
nate very few static instructions. For instance, loop variable
updates (e.g. i++) can be good specialization candidates,
enabling loop unrolling, but generally are not dominators.
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namic execution count, and the number inside is the in-

fluence.

All of these heuristics are “brittle” in the sense that they
only find good dispatch points if they are provided with func-
tions with a particular static control flow structure, while a
dispatch point’s true benefit seems to be more robustly tied
to its function’s dynamic execution behavior.

Our solution: Influence. This brittleness led us to
recast the problem in terms of approximating a forward dy-
namic slice. Given an instruction i and a value v, the for-
ward dynamic slice is the set of dynamic instructions af-
fected when the value computed by i is v; see Tip [48] for a
good summary.

The motivation behind using slices is that instructions
that contribute to v’s specialized trace’s benefit are neces-
sarily from i’s forward dynamic slice. Thus, computing a
forward dynamic slice for each of an instruction’s hot val-
ues yields an over-approximation of the potential benefit of
specializing on that instruction.

However, computing a dynamic slice is very costly; even
the most efficient algorithms require extensive preprocess-
ing [51], a luxury we cannot afford in a purely runtime envi-
ronment. Thus we make a key simplifying assumption: we
approximate the slice in a data-independent fashion by in-
cluding all of the instructions in the CFG that dynamically
follow instruction i. Thus, we simply need to compute the
number of dynamic instructions that follow i.

Formally, we utilize a function f ’s control-flow graph and
dynamic basic block and edge execution counts. These two
items induce a (possibly infinite) set of execution traces of
the function, where a trace is a sequence of edges e1e2...en

from the start of the function to the end. Let count(x) be
the dynamic execution count of graph component x. Assum-
ing independence of branch outcomes, each trace t can be
assigned a probability of occurrence, by taking the product
of the probabilities of its branch choices:

occurrence(t) ≡ t is followed on an execution of f (1)

Pr[occurrence(t)] =
Y

edge e=(m,n)∈t

count(e)

count(m)
(2)

Together, the traces and their probabilities constitute f ’s
expected execution set, or EES, dictated by the profile.



Pr[reach(m, s)] =
X

edge e=(m,n)

count(e)

count(m)
·
(

1 if n = s

Pr[reach(n, s)] otherwise

(5)

E[len(m)] = 1 +
X

edge e=(m,n)

count(e)

count(m)
E[len(n)] (6)

influence(i) = Pr[reach(start, i)] · E[len(i)] (7)

Figure 4: Equations for computing the influence of an

instruction i as the solution of two systems of linear equa-

tions. start is the function’s entry instruction.

E[num(m)] =
count(m)

count(start)
(8)

E[slen(m, s)] = 1+
X

edge e=(m,n)

count(e)

count(m)
·
(

0 if n = s

E[slen(n, s)] otherwise

(9)

influence(i) = E[num(i)] · E[slen(i, i)] (10)

Figure 5: Alternate equations for computing the influ-

ence of an instruction i as the solution to a single system

of linear equations. start is the function’s entry instruc-

tion.

We define the influence of an instruction i with respect to
a particular trace t as the length of the subtract from the
first occurrence of i along t until the end of the trace:

influencet(i) ≡ length(ek ...en) (3)

where ek is the edge from the first occurence of i.
The overall influence of i is the expected length of this

path over all traces, computed as the influence per trace,
weighted by each trace’s probability of occurring:

influence(i) ≡
X

t∈EES

Pr[occurrence(t)] · influencet(i) (4)

See Figure 3 for a sample influence computation. The influ-
ence of 30 for B means that an average of 30 instructions
follow the first execution of B on a given function invoca-
tion. Note that the influence of instruction C is nearly as
great as that of B, even though it is executed on only 40%
of loop iterations. This is because it affects all instructions
after the first time it is executed — a property that we were
unable to capture with other heuristics.

Unfortunately, the existence of loops in control flow graphs
makes a computation of influence from Equation 4 infeasible
because the EES can be infinite in size.

Instead, we can recast the influence of i as the combination
of two problems (Equation 7, Figure 4): the probability of
ever reaching i during an invocation of f (reach, defined in
Equation 5), and the expected length from i to the end of
the function once i is reached (len, defined in Equation 6).
Both are recursive definitions that produce systems of linear
equations.

We use dynamic execution count data to simplify the

Benchmark Total ExecFr Dom First-n Inf

conv-VI 39 34 1 1 1
conv-FI 39 33 2 2 2
dotproduct 8 5 1 1 1
i-sort 52 3 46 52 4
i-search 52 3 46 52 4
jscheme 29 26 1 1 1
query 20 12 1 1 1
sim8085 86 3 31 21 5

Figure 7: Rank (1 is best) of the most beneficial in-

struction in the principal function of various benchmarks

according to several ordering heuristics. Total is the to-

tal number of candidate instructions for each principal

function.

problem further. We solve just one system of linear equa-
tions, by directly computing the expected number of times i
is executed per invocation of f (num, defined in Equation 8).
We can then view each trace as a series of shorter paths from
an instance of i to the immediately next instance, or (in the
case of the last short path) to the end of the function, and
define a system of equations to compute the expected length
of such a path (slen, defined in Equation 9). The influence
of i is the product of these two expectations (Equation 10).

The systems of equations in Figures 4 and 5 can be solved
via Ramalingam’s data flow frequency analysis framework [38].
Ramalingam cites a number of algorithms for solving such
systems on a reducible control flow graph in almost-linear
time. For instance, a simplified version of Tarjan’s algo-
rithm [47] runs in O(e log v) time, and the Allen-Cocke in-
terval analysis algorithm [1] runs in linear time on graphs
with a bounded loop nesting depth. We also present a truly
linear time algorithm for solving influence on a reducible
control flow graph in Appendix A.

Our implementation of influence operates on Java byte-
codes. While Java programs must result in bytecodes that
represent reducible control flow graphs, it is possible to con-
struct irreducible graphs with arbitrary Java bytecodes (per-
haps with a compiler for another language that outputs Java
bytecodes), since there is a goto bytecode. Our implemen-
tation supports reducible control flow graphs only.

Figure 7 compares influence against the other heuristics
mentioned above on the actual Java programs described in
Figure 6. Each of the other metrics successfully ranked
the optimal dispatch point highly for several programs, but
failed on the rest of the programs. Influence appeared to
succeed at identifying good dispatch instructions both accu-
rately and consistently.

4. IDENTIFYING HEAP CONSTANTS: THE
STORE PROFILE

Loads from memory can be safely removed if the special-
izer knows that the values at those memory locations will
not change throughout the rest of the program execution.
Alternately, the specializer can employ the more aggressive
strategy of assuming that certain locations will remain con-
stant. This strategy, which our specializer employs, uncovers
more constants, those for which the guarantee of invariance
is impossible or very difficult to acquire. However, if such
an optimistic assumption turns out to be false – an assumed
constant memory location is actually updated later in the
execution – any optimizations that depend on it must be
invalidated. Thus, since the cost of an incorrect assumption



Benchmark Description Input(s)

convolve Transforms an image with a matrix; from the ImageJ toolkit various images, fixed matrix (conv-VI)
fixed image, various matrices (conv-FI)

dotproduct Converted from C version used in DyC [21] sparse constant vector: 75% zeros
interpreter Interprets simple bytecodes bubblesort bytecodes (i-sort)

binary search bytecodes (i-search)
jscheme Interprets Scheme code partial evaluator
query Performs a database query; converted from DyC semi-invariant query
sim8085 Intel 8085 Microprocessor simulator included sample program
em3d Electromagnetic wave propagation (intentionally unspecializable) -n 10000 -d 100

Figure 6: Description of benchmarks and their inputs.

is high, a technique for making accurate optimistic guesses,
guesses that are most often right, is needed.

We have designed the store profile to make such guesses.
Ideally, we would make it

const(a): will address a be updated in the remainder of
execution?

While a number of static analyses [3, 30] can conservatively
approximate this predicate, our dynamic specializer requires
as efficient a technique as possible, and also we would like
it to exploit as many constants as possible, even those that
may not reveal themselves to a static analysis. Thus, we use
the past behavior of the program, from the start of execution
until specialization time, as a guide to future execution. We
simply assume that if a location has been constant, it will
remain constant. This approximation of const(a) is efficient
but not conservative:

var(a): has a been written to more than once?

If var(a) holds, then a is assumed to remain variant for the
rest of the execution; if not, then a has only been initialized
and we optimistically consider it constant.

Monitoring every store is too expensive; hence, our spe-
cializer employs sampling-based profiling, described in greater
detail in Section 7.1, in which only one out of every 1000 or
so stores is monitored. The profile thus evaluates the fol-
lowing predicate, which approximates var(a).

w(a): does a random sample of observed stores contain a
store to address a?

If so, then a has almost certainly not been constant, since it
must have been updated enough to be detected by the pro-
filer. Furthermore, rarely written locations are likely to be
identified as constants, which can allow for beneficial spe-
cializations until the next time they are updated.

Implementation. The store profile records the addresses
of all sampled memory updates in a hash table. The sam-
pling interval is 1000. Since the profiler tracks the exact ad-
dresses of store instructions, it is able to identify constants
as small as individual object fields or array elements.

Overhead. The time and space overheads of the store
profile are generally under 5%; more numbers and a discus-
sion are presented in Section 7.1.

Evaluation of accuracy. The store profile’s accuracy
can be assessed by measuring the fraction of memory loca-
tions it claims are constant that actually remain constant
for the duration of the program execution.

Divide a program’s execution into two phases: Phase 1,
before the specializer is invoked, and Phase 2, afterwards.
Let L be the set of all memory locations read by the pro-
gram in Phase 1. L is an upper bound on the number of

possible constants the specializer could infer, since it is a
superset of all the concrete addresses the specializer could
have identified.

Let Sw be the set of locations detected as written to by
the store profile in Phase 1. Cw := L − Sw, then, is the set
of memory locations the store profile reported as constant.

Let W be the set of all locations written to in Phase 2.
C := L − W is then the set of locations known in Phase 1
that actually were constant from specialization onward.

We formally define the accuracy of the store profile as
|C ∩Cw|/|Cw|: the fraction of claimed constants that really
were never modified by the end of the program.1

We instrumented 12 Java programs to compute this value.
The mean accuracy was 95.6%, indicating that (1) locations
that start out constant overwhelmingly tend to remain con-
stant, and (2) variable locations tend to be updated fre-
quently enough to be observed by the profiler. These ob-
servations provide a reasonable basis to employ the store
profile, as few invalidations should occur as a result of its
predictions.

4.1 Benefits of Heap Profiling
This dynamic store profile, in addition to being very sim-

ple to implement, also enables more powerful specializations
than existing hybrid approaches to heap constant detec-
tion. It does not require programmer understanding of a
program’s heap data structures, it is not susceptible to un-
sound programmer mistakes, and it can detect constants
in library, dynamically-loaded, or otherwise unannotatable
code. Furthermore, it exposes a new class of constants to
specialization. Consider the three classes of constants below.

1. Compile-time constants: their values can be deter-
mined statically.

2. Run-time constants: they are known at compile-time
to be constant, but their values can only be determined
at run-time.

3. Transient constants: they are only constant for par-
ticular program inputs or intervals of execution.

Compile-time constants can be optimized by normal static
compilers. Run-time constants include, for instance, the
bytecodes fed to an interpreter: data that we know will
not change, but whose values we can only access at run-
time. This class of constants provides the most common
optimization opportunities for current specializers: during
their off-line phase, they annotate these constants and spe-
cialize with respect to them at run-time.

1Note that some of the locations that were updated may have
remained constants, if the updates did not change the actual
value at those locations; this is known as the silent store phe-
nomenon [32].



Transient constants include nodes in a semi-invariant data
structure, or memory locations that are only constant de-
pending on the program’s input – those that static analysis
or annotation would not identify as constant. A typical ex-
ample is the memory region associated with an interpreted
program. It may contain constants, but whether they exist
and where they are is naturally dependent on the partic-
ular program being interpreted. This class of constants is
especially difficult to pinpoint via static annotations of the
interpreter, whether produced by a programmer or a tool,
since neither generally has access to each particular inter-
preted program. Identifying these constants enables the in-
terpreted program to be specialized, not just the interpreter.

Another example is a database query processor. In the
figure below, it iterates over the boolean predicates in a
query, applying them in turn to each item in a dataset.

public boolean Satisfies(Predicate p) {
switch(p.conditionType) {

case LT:
if (p.LHS.resolvedVal <= p.RHS.resolvedVal)

...
}

}

Many database queries are prepared, in the sense that the
predicate operands are fixed, but some of the actual values
are repeatedly modified as the query is submitted over and
over to the database2. Thus while much of the query data
structure is constant from query to query, portions of it are
updated during execution, so the structure is only partially
invariant: some Predicates are constant while others are
not. However, Satisfies can still be specialized with re-
spect to the constant Predicates in the query, resulting in
fewer loads when invoked on them.

Static annotation approaches are unable to capitalize on
this opportunity. A class-based source code annotation, in
which the Predicate LHS field is marked run-time constant,
would fail since some variable Predicates update their LHS

field. Similarly, an expression-based annotation, in which
p.LHS.resolvedVal is marked constant, would also fail since
some of the Predicates passed to Satisfies are not con-
stant.

In contrast, a dynamic invariance detector, which moni-
tors the invariance of concrete memory locations, finds all
three types of constants. Thus, just those Predicates that
are constant can be identified, and Satisfies specialized on
them. Furthermore, the lack of abstraction makes individ-
ual fields or array elements distinguishable: loads from the
individual constant fields of modified Predicates can also
be eliminated.

5. MAINTAINING SOUNDNESS: INVALIDA-
TION

Runtime execution profiles are no guarantee of future be-
havior; if a memory location that the store profile claims is
constant gets updated, any specialized traces that depend
on it must be be invalidated. Thus, a sound technique is
needed for (1) detecting updates to particular memory loca-
tions and (2) invalidating the corresponding specializations,
ensuring that control flow is safely returned to their un-
specialized versions. We discuss our solution to these two
2This technique is generally employed for security (malicious
users cannot alter the structure of the query) and efficiency (the
query does not need to be re-parsed each time).

requirements below, and then describe some alternate de-
tection strategies.

5.1 Detecting Updates To Assumed Invariants
During specialization, the specializer accumulates a list of

the memory locations it has assumed are invariant, as well as
their types. The update detector must use this information
to monitor all of these memory locations for updates.

Our solution is simple: to insert write barriers in front
of all stores in the program that might update any of these
locations. In a naive implementation, the update detector
iterates over all stores in the program and inserts a check at
each store to test the address to which it is storing against
the set of locations to be monitored. If the address matches
one of these locations, an invalidation is triggered for all the
specialized traces that assume that location is constant.

Naturally, this approach can have a prohibitive overhead
if care is not taken. Our implementation attempts to be
efficient in two respects:

Reducing the number of inserted write barriers.
Unlike C’s, Java’s type system is precise enough to eliminate
write barriers for many stores.

Say a memory location to be monitored, l, corresponds to
field foo of object class Bar. If foo was declared in a parent
class Baz, only writes to a field named foo in object refer-
ences that are statically subclasses of Baz need to have write
barriers inserted3. Similarly, for arrays, if l is a member of
a short[] array, only stores to short[] arrays need to be
checked. Also, stores in constructor methods that write to
this can be ignored, since they are necessarily storing to
newly allocated objects.

Of particular concern is the insertion of write barriers into
specialized code. This code is known to be very hot, and in-
serting too many write barriers can cause debilitating over-
heads. Luckily, the exact addresses of most stores in spe-
cialized code are known through constant propagation. In
these cases, we can compare these addresses directly to the
set of locations to monitor at specialization time and nearly
always rule out the corresponding stores. If array indices are
not known, array base addresses can be compared to elim-
inate barriers for stores to arrays that have no monitored
elements.

To reduce the cost of looking through every compiled
method for stores, during method compilation the system
notes the object types and field names to which each method
stores. This information is consulted during write barrier in-
sertion to yield a list of just the methods that need to have
barriers inserted. Inserting write barriers into methods that
have not yet been compiled by the VM (e.g. have not yet
been invoked by the program) is deferred until those meth-
ods are compiled for the first time. This allows us to avoid
recompiling most of the Java class libraries.

See Figure 8 for a table of the number of write barriers
that had to be inserted in each of this paper’s benchmarks.

Reducing the cost of executing the write barri-
ers. Our write barrier implementation inserts a hash table
lookup before a store that identifies if the address to be
modified points to any of the locations that the specializer
assumes are invariant.

3It is also possible to store to arbitrary objects via reflection.
We handle this exceptional case by explicitly modifying the
java.lang.reflect methods in the VM to notify the specializer
of any stores.



Benchmark Constant Barriers Steady-
Memory Inserted State
Locations Overhead

conv-VI 153 72 9%
conv-FI 9 5 3%
dotproduct 102 5 -1%
i-sort 50 14 6%
i-search 58 10 1%
jscheme 482 4 3%
query 84 21 2%
sim8085 25 8 12%

Figure 8: Invalidation detection information and over-

head. The steady-state overhead compares the a spe-

cialized program with invalidation detection against the

equivalent specialized program without it.

By itself, this lookup requires several arithmetic compu-
tations and memory loads, and can interfere with cache lo-
cality. In practice, we found that the barrier overhead was
too great. Thus, the specializer employs a bit in the field’s
enclosing object’s header as a first pass to weed out stores
to objects that have no invariant fields. An object’s bit is
set by the specializer when it makes the assumption that a
field in that object is invariant. If the field is static, the bit
is set in its corresponding Class object. On writes to that
field, the bit of the enclosing object (or the Class object, if
the field is static) is tested and only if it is set the hash table
lookup is performed. (The lookup is still necessary because
it is possible that the field being updated is not invariant,
even though the enclosing object’s header bit is set, because
the object happens to contain another field that has been
flagged as invariant.)

To minimize overhead on array element updates, the spe-
cializer creates a bitmask summary of the assumed-invariant
array indices, as in the Diduce system [24], and inserts code
to check the array index to be updated against this mask be-
fore executing the lookup. The Diduce masking procedure
is conservative, so if the updated index does not match the
mask, it cannot write to any invariant addresses, and the
hash table lookup can be avoided. For a particular array el-
ement update, if the base address of the array is known, the
specializer constructs a bitmask containing only the invari-
ant indices of that array; if not, the bitmask is constructed
from the invariant element indices of all arrays of the given
type.

See Figure 8 for performance numbers. The detection
mechanism executed with steady-state overheads of under
15%. Since this overhead is only incurred on programs that
are actually specialized, and the speedup of specialized pro-
grams tends to be dramatically larger, as shown in Section 7,
we feel that it is suitable for a runtime environment.

5.2 Performing Invalidation
Once a memory location that a specialized trace assumes

is invariant has been updated, that trace must be invali-
dated and discarded. If the trace is not on the execution
stack when such an update occurs, it is easy to invalidate:
the specializer assigns each trace its own boolean variable
isInvalidated, which is set to true upon invalidation. The
trace’s dispatch is designed to check if it has been inval-
idated every time before invoking it, and if so to revert
control to the unspecialized code. This technique does not
require any recompilation upon invalidation, and has negli-
gible overhead.

However, difficulty arises if the trace is already on the
stack at the time an errant write is detected. Control must
revert to unspecialized code when the trace resumes execut-
ing, regardless of where in the trace execution happens to
be. We are not aware of any mechanisms in existing special-
ization systems that handles this case.

Our solution is relatively straightforward. During special-
ization, the specializer identifies all the instructions in the
trace that could lead to an invalidation. It then ensures that
these points are synchronized with the corresponding points
in the unspecialized code so that control can immediately re-
sume at the corresponding unspecialized points in a sound
fashion if invalidation does occur. Finally, the specializer
inserts conditional jumps at all of these points to check for
invalidation; these jumps are identical to the check inserted
at the beginning of the dispatch.

The only instructions that can invalidate a specialization
are stores that require write barriers (as determined by the
write barrier insertion method described above), calls to
other functions (which might have such stores), and compiler-
inserted yield points (which might cause a context-switch).
Thus, the specializer only inserts isInvalidated checks af-
ter these instructions.

Synchronization of specialized and unspecialized code is
simple, as the specializer already uses the same registers
where appropriate. (Since most register variables are constant-
folded in a specialized trace, this technique generally adds
little register pressure.) Basic blocks are split as necessary
to ensure that jumps can be made after potentially invali-
dating instructions.

This invalidation procedure has several benefits: it en-
sures soundness by immediately transferring control to un-
specialized code, it is easy to implement, and it does not
require recompiling a specialized method upon invalidation.

5.3 Alternate Detection Strategies
Below we discuss a number of other potential detection

techniques.
Dispatch detection. The simplest way to check for in-

validation is to insert a test at the beginning of a special-
ized trace that compares the actual contents of the trace’s
assumed constant locations to the expected contents. This
approach is suited for when the specialized region encom-
passes a CPU-intensive, memory-light computation. Con-
sider a function

public BigInt[] Factor(BigInt num) { ... }

dispatched on num, in which the computation might be very
expensive but the data to check (the locations corresponding
to a BigInt, perhaps several words) can be verified very
quickly. This technique is akin to simple caching.

GC-based detection. Copying collectors are already
good at moving objects around in memory. If one is being
used, the specializer can tell it to move objects contain-
ing assumed constant fields to special read-only pages, so
that any writes to them will issue a page fault that can be
trapped. This approach is very efficient for detecting writes
to assumed constants, but there is the caveat that writes
to other, perfectly mutable fields of the selected objects will
trigger page faults as well. Thus it should be employed if
the store profile indicates that these other fields are written
to infrequently, or if there are only a few of them.

Mondrian hardware support. Witchel et al. [49] have
introduced Mondrian memory protection, a fine-grained mem-



ory protection scheme that relies on hardware support. In
this scheme, permissions are granted to memory segments
as small as individual words. Using it, the specializer can
grant read-only permissions to assumed constant memory
locations. Whenever these memory locations are written,
the memory protection scheme traps to software that can
perform invalidation. An upper bound on Mondrian over-
head is 9%, when every object in memory is protected; in
practice, the number of objects that need to be protected
is small (see Figure 8), so we estimate runtime overhead to
be less than 5%. Transmeta already employs similar (al-
beit more restricted) fine-grained memory protection in its
Crusoe processor [16].

6. TRACE CREATION
In this section, we describe the mechanisms used to cre-

ate specialized traces, as well as some key implementation
details.

Assume we have identified a suitable dispatch point in-
struction i and one of its hot values v, for instance the as-
signment of the value 2 to pc in Figure 1. The specialization
procedure creates a specialized trace starting from i, with
the assumption that i resulted in v. The procedure uses a
simple benefit analysis, presented in detail in Section 6.1, to
identify when to end the trace; the relevant values are the
net benefit of a trace, the estimated total number of runtime
cycles it will save, and the instantaneous benefit, an estimate
of the benefit that will accrue from growing the trace fur-
ther. We present synchronous and asynchronous variants of
the specialization procedure.

Synchronous version. The synchronous specialization
procedure adapts Dynamo-style trace creation [9]. Dynamo
is a transparent dynamic optimization system that begins
execution by interpreting a program. Counters are kept at
loop headers, and when execution reaches a hot-enough loop
header, the system starts generating optimized straight-line
code alongside the code it is interpreting, stopping at a
backedge. The next time execution reaches this particular
point, the optimized trace is natively executed instead.

This model suggests a natural way to construct specialized
traces. Traces are created synchronously over successive ex-
ecutions of the dispatch point. The synchronous specializa-
tion procedure is quite simple: it intercepts execution when
the dispatch point i is reached; assume that i assigns v to
the variable x. Like Dynamo, it then interprets the follow-
ing code, creating a trace along the way. Forward branches
whose conditionals are constant are eliminated. Those that
are not runtime constant assuming x = v are evaluated
based on the current execution state, but a fall-back jump to
unoptimized code is inserted in case the outcome is different
in a future execution of the trace.

This trace creation procedure differs from Dynamo’s in
the following respects. Traces can begin at any given pro-
gram point, not just at loop headers. Constant propagation
is seeded with the initial hot value, and also utilizes profile-
inferred constant locations in memory. Loop backedges (back-
ward branches) are followed and further iterations are un-
rolled, so that each loop iteration is specialized.

A specialized trace is terminated in one of two ways: (1)
if the trace’s current program point and propagated con-
stants match the beginning of another trace, they are linked
together: a direct jump to the other trace is issued; (2) if
the instantaneous benefit falls below a threshold, usually be-

cause constant propagation becomes too intermittent, con-
trol is returned to the unoptimized code.

Lastly, unlike Dynamo, the specializer generates multiple
traces at a dispatch point, one for each of its hot values.
When a dispatch point is identified, a stub dispatcher is in-
serted that transfers control over to the trace generator if
any of the hot values is detected. When a new trace is gener-
ated, the dispatcher is modified to jump directly to it when
its hot value is seen again. A future time around, another
hot value may be detected and another trace generated.

Asynchronous version. Due to infrastructure constraints,
we implemented an asynchronous version of the specializa-
tion procedure that differs from the synchronous approach
in (1) when it creates the different traces, and (2) how it
resolves non-constant branches.

Given a dispatch point and a set of hot values, the asyn-
chronous specializer interrupts execution and creates traces
for all of the chosen hot values at the same time. Trace
linking occurs at the basic block level, and across hot value
traces, reducing specialization time and code size. If a spe-
cialized version of basic block b1 has a jump to b2, and there
exists a specialized version of b2 with the appropriate initial
set of constants, a direct jump from b1 to b2 is issued, even
if b2 is not at the start of a trace.

The specializer still eliminates conditional jumps that are
fully resolvable. For those that are not, it uses an edge
profile to predict the most likely branch target and continues
trace construction from there.

Additional benefit ascribed to this trace from further spe-
cialization is scaled by the probability that an actual ex-
ecution will take the predicted branch. For instance, if a
branch b has two targets, t1 and t2, and jumps to t1 60% of
the time, specialization will continue at t1 (after inserting
a fall-through jump to t2), but all further benefit will be
scaled by .6. Thus the benefit function does not simply sum
the number of optimized instructions; instead, the benefit
accrued by each optimized instruction is multiplied by the
current scale factor before being added. At low scale factors,
even successful optimizations will accrue little benefit, since
the chance of execution is low. Thus trace termination by
the standard benefit criterion can result.

To avoid unrolling predictable yet unspecializable loops
(such as those that perform calculations uninfluenced by the
dispatch instruction), the specializer monitors the benefit
accrued in each loop iteration. It stops unrolling and con-
tinues specializing beyond the loop if the anticipated benefit
falls below a specified threshold.

6.1 Details
Benefit function. We use a simple cost/benefit heuris-

tic to help determine which dispatch points to select from
likely candidates, and when to stop specializing a particular
trace. We have not studied this heuristic in detail, and em-
ploy it primarily because it is simple and works well; further
analysis and refinement is future work. A number of other
specializers, such as Calpa [35] and Suganuma et al. [45],
have employed more sophisticated heuristics.

Consider a trace t of a hot value v, at a dispatch point i.
Its pure benefit, Pure(t), is an estimate of the number of
dynamic cycles it will save, using past execution frequencies
to guess at the future.

Pure(t) = (C + wE) ∗ count(v)



C is the number of inexpensive instructions, such as ALU op-
erations, and E is the number of expensive operations, like
loads and bounds checks, that have been optimized away,
and w is a constant weighting factor to account for the
fact that these latter instructions take longer to execute.
count(v) is the profiled execution count of hot value h, and
is an estimate of the number of times this trace will run
in the future. Predictive branching modifies this formula
slightly, as explained above.

The net benefit of a trace, Net(t), is its pure benefit minus
the cost of recompilation (once a trace is created, it must
still be compiled down to machine code), invalidation, and
dispatching:

Net(t) = Pure(t) − R ∗ length(t) − I(t) − count(p)

R is a constant recompilation factor, I(t) is a function of the
number of invariant memory locations that must be moni-
tored, and count(p) accounts for the cost of a dispatch: an
instruction that must be executed every time the dispatch
point is reached. The net benefit of a dispatch point is the
sum of the net benefits of its traces.

When creating a specialized trace, we would like to know
how well the procedure is currently doing, to help decide
when to stop specializing. Given a window of n previous
instructions in the optimized trace, we define the instanta-
neous benefit, I as

I = ((Cn + wEn) ∗ count(v))/n − R

where Xn is in the number of X instructions in the last n.
The instantaneous benefit is a quick estimate of the current
average benefit we are receiving per instruction. In practice,
we use n = 100.

Dispatcher creation. In our current implementation, a
dispatcher consists of a series of if-else blocks, testing in turn
for each of the hot values at the dispatch point, and jump-
ing to the corresponding specialized trace if its hot value is
found. These blocks are ordered in the dispatcher by the
predicted frequency of occurrence of each of their hot val-
ues. Since our specializer tends to find only the first handful
of hot values (nearly always fewer than 10) worthy of spe-
cialization, this simple approach seems to work well.

Algorithm discussion. The specialization algorithm
has the benefit of being relatively easy to implement: there
are no heavy-duty analyses, and all optimizations are per-
formed in one forward pass. Furthermore, the specialization
process, unfettered by a fixed-size specialized region, can
produce traces of different lengths for different hot values,
terminating each when it individually stops being beneficial.

The algorithm creates dispatch points that are polyvari-
antly specialized : they have different specialized traces for
different hot values. However, for simplicity, it does not sup-
port polyvariant division, in which a single specialized trace
can be created and dispatched with respect to multiple val-
ues. DyC and other systems have shown supporting such
a division to be useful in some cases [20]. We have imple-
mented a simple extension that can specialize on multiple
variables x, y, z... as long as all but one are run-time con-
stant. This extension works well in some cases but cannot,
for instance, produce one trace for x = 3 and y = 4, and
another for x = 5 and y = 6, since both of these variables
are not run-time constant. Extending our specialization al-
gorithm to more fully support polyvariant division is future
work.

Figure 9: A conceptual view of the overheads involved

in specialization. There is a steady-state profiling over-

head, a one-time specialization overhead, and if special-

ization is successful, a steady-state invalidation overhead

incurred by the write barriers.

7. EVALUATION
Methodology. The specializer presented in this paper

was implemented in the Jikes RVM 2.3.0.1 Java virtual ma-
chine. Measurements were taken on a Pentium M 1.6GHz
machine with 1GB RAM running Fedora Core 3 Linux. For
the specialization runs, the profiling code was sampled using
the full duplication variation the Arnold-Ryder instrumen-
tation sampling framework [6], with a sampling interval of
1000.

The applications that we benchmarked are representa-
tive of those chosen in the dynamic complication literature.
In some cases we have directly translated programs bench-
marked in previous research from C to Java, and in others
we have taken real-world Java programs. For many pro-
grams, specialization is not beneficial, so we also wanted to
assess whether our specializer is suitable for a transparent
dynamic compilation unit that can operate on any program,
specializable or not. Thus, we have additionally included a
benchmark, em3d, that is distinctively not suited for special-
ization. The benchmarks are described in Figure 6.

To ensure optimal unspecialized performance, the num-
bers in the results measure execution time after full initial
compilation, with inlining, of the program code by Jikes’s
OPT1 compiler — the highest optimization level that this
version of the Jikes adaptive optimization system selects for
the Linux/IA32 platform. Thus the unspecialized numbers
generally represent the fastest expected performance on an
unmodified Jikes RVM.

Description of results. There are a number of over-
heads involved in our dynamic specializer, and we have at-
tempted to measure all of them. See Figure 9 for a concep-
tual diagram of when these overheads come into play during
a program execution, and Figure 10 for the actual numbers.

The specializer employs a number of profilers (described
in greater detail below), each of which contributes a steady-
state overhead to the execution. In practice, the overhead
of all of the profilers running at once is generally less than
the sum of their individual overheads, since they share a
common profiling infrastructure. These overheads are shown
as a percentage steady-state slowdown.

There is a one-time overhead incurred by the actual spe-
cialization process. This overhead is comprised of three dis-
tinct sections: (1) selecting a region to specialize, using the



influence algorithm and then tentatively specializing on a
number of candidate dispatch point instructions; (2) if a
good region is found, creating specialized traces for the hot
values of the selected instruction; (3) inserting write barriers
and recompiling code for invalidation. These overheads are
shown in seconds.

If specialization successfully completes, the program gen-
erally runs faster than it did before, but still incurs the
steady-state overhead of executing the invalidation write
barriers that were inserted during specialization. This over-
head is shown as a percentage steady-state slowdown of the
specialized program.

The “No-Overhead Speedup” row in Figure 10 displays
the pure steady-state speedup achieved by the specialized
code over a normal execution, without any of the profiling,
creation, or invalidation overheads.

The “Real Speedup” rows display speedup numbers for
real specialized executions, and encompass all profiling, cre-
ation, and invalidation overheads. These numbers cannot be
derived directly from the no-overhead speedup and overhead
numbers, since the impact of the various overheads is depen-
dent on the particulars of an execution: its total length, the
time before the specializer was triggered, and so on. Fur-
thermore, some percentages, such as those for invalidation,
necessarily represent slowdowns of specialized programs, not
the original ones.

7.1 Profiling
Our specializer requires a number of profiles. They are

• An edge profile used to aid the influence algorithm and
branch prediction.

• A hot value profile that collects the most frequently
occurring values at potential dispatch points.

• The store profile we presented in Section 4.

Since all of these profiles must be gathered at runtime with
low overhead, we used the Arnold-Ryder sampling frame-
work [6]. In this framework, a duplicate instrumented ver-
sion of each function is compiled alongside the original. The
uninstrumented version is normally executed. A global counter
is kept and decremented at backedges and other yieldpoints,
and when it reaches zero, control is transferred to the in-
strumented version of the currently executing function, and
samples are taken until a backedge reverts control back to
the original code. The counter is then reset and normal
execution resumes. Since instrumented code is run very in-
frequently, execution overhead is generally low and yet the
resulting profiles tend to be statistically accurate.

To reduce execution time, our sampling implementation
adaptively doubles the sampling interval (the starting value
of the global counter) every time a specialization attempt
fails. With this mechanism, programs that are specializable
may incur a high profiling overhead (greater than 10%), but
only for a short amount of time, before specialization occurs;
the profiling overhead for programs that are not specializable
quickly drops to an acceptable value.

Hot value profile details. Hot value profiling has been
well studied before, as in Burrows et al. [33], so we do not
discuss it in detail here. In our implementation, the hot
value profile simply monitors the frequency of occurrence of
the most popular values resulting from potential dispatch
instructions: arguments to loads and functions, and load
results. The profiler keeps a short array of value/count pairs

for each profiled instruction, and employs the “Top N Value”
method described in Calder et al. [11].

Overhead discussion. The edge profile and store pro-
file have low runtime overheads. The small speedup for
convolve with store profiling appears to be the result of
a low-level compilation artifact.

We did not attempt to create an efficient hot value pro-
filer, as such a task has been undertaken before, and instead
focused on ease of implementation. For instance, the pro-
filer is invoked via a function call rather than being inlined.
Burrows et al. [33] have shown that a hot value profile can
be gathered with a runtime overhead of about 10%, and pro-
posed hardware solutions have overheads of under 2% [52].
The slowness of the hot value profiler compared to this 10%
figure can be attributed partially to the large number of
loads in tight loops in some of the test programs, and also
to our suboptimal implementation of the profiling code. The
exponential backoff in sampling interval that we employed
served to keep the hot value profile overhead low for unspe-
cializable programs.

The memory overhead for the store profile ranged from
2.2% to 7.6% with a mean of 4.8%, while the memory over-
head for the hot value profile ranged from 10.8% to 30.3%,
with a mean of 24.5%. This latter overhead is high pri-
marily because all functions, whether hot or cold, are hot
value-profiled in our implementation. Since only hot func-
tions are ever considered for specialization, an optimization
that just profiles hot functions can drastically reduce the
space overhead without comprimising the specializer’s effec-
tiveness. A preliminary implementation of this optimization
for the hot value profile had space overheads of well under
10%.

7.2 Discussion of Results
In this section, we evaluate several hypotheses concern-

ing the specializer’s overall performance with respect to the
benchmark data.

Does the specialization procedure work? We spe-
cialized a number of programs, from an image convolver to
a Scheme interpreter executing a 500 line partial evaluator.
In every case, the optimal specialization dispatch point, as
determined by a manual analysis of the code, was automat-
ically selected.

The resulting speedups are comparable to those of staged
specializers like DyC [21]. In several cases, a manual analysis
revealed near-optimal code; for instance, in dotproduct, the
specializer fully unrolled the loop iterating over the (sparse)
vector elements and was able to eliminate outright the 75%
of the iterations in which the constant vector’s element was
zero. Half of the loads — the ones from the constant vector
— in the other 25% were eliminated as well.

Is it suitable for a runtime environment? In all but
one case, specialization time was under 1s. This overhead,
along with the profiling overhead discussed in Section 7.1,
seemed to be quickly outweighed by the much more signifi-
cant speedups due to specialized code.

To warrant inclusion in a dynamic optimization system’s
arsenal of optimizations, the specializer should behave well
on all programs. We ran it on em3d, with input parameters
that made the program a bad candidate for specialization:
we had it create a very large number of data objects that
were visited equally often, thus rendering specializing on a
small number of them ineffective. The specializer attempted



conv-VI conv-FI dotprod i-sort i-search jscheme query sim8085 em3d

No-overhead Speedup 215% 24% 424% 551% 571% 88% 76% 110% 0%
Profiles Edge -1.0% -1.1% -7.6% -0.6% -0.2% -2.3% -9.4% -0.5% -3.9%

Value -2.6% -2.6% -15.0% -4.5% -4.3% -12.7% -15.8% -11.2% -4.9%
Store 2.8% 2.6% -2.1% -2.8% -2.7% -1.6% -6.3% -3.2% -1.0%

All Simultaneously -0.1% -0.3% -18.0% -4.5% -4.2% -13.1% -19.8% -13.9% -5.1%
Specialization Selection < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s 0.1s

Creation 0.3s 0.1s 0.1s 0.1s 0.1s 0.2s < 0.1s 0.1s –
Inserting Barriers 1.5s 0.1s 0.1s 0.7s 0.6s 0.3s 0.6s 0.3s –

Total 1.8s 0.2s 0.2s 0.8s 0.7s 0.6s 0.7s 0.4s 0.1s
Invalidation -9% -3% 1% -6% -1% -3% -2% -12% –
Real Speedup Short run 153% 19% 330% 387% 401% 70% 63% 66% -4%

59s/23s 59s/50s 61s/14s 60s/12s 53s/10s 59s/34s 54s/33s 59s/36s 65s/68s

Long run 174% 23% 417% 496% 544% 82% 71% 70% -2%
601s/219s 598s/487s 603s/117s 603s/101s 527s/82s 580s/319s 544s/317s 593s/349s 525s/534s

Figure 10: Dynamic specialization speedups and overheads. The profile percentages measure the steady-state slow-

down, before any interval doubling has occurred. The specialization numbers measure in seconds the total time it

takes to construct a specialized region. The invalidation percentages measure the steady-state slowdown of the spe-

cialized program with invalidation write-barriers in place. The no-overhead and real speedups measure the change in

execution speed of each program, respectively without and with all of these overheads. Execution times are rounded

to the nearest second.

and aborted three specializations, and after each failure it
doubled the sampling interval. As a result, the overall slow-
down was 4%.4 This percentage is representative: we ran
the specializer on numerous other unspecializable programs
from SpecJVM and elsewhere, and none had a slowdown of
more than 6%. We feel that this number could be made
even lower with a more efficient profiling implementation.

Does it take advantage of opportunities unavail-
able to staged specializers? The dynamic, optimistic
approach taken by our specializer allows it to exploit run-
time data and execution behavior to expose optimization
opportunties unavailable to an annotation-based staged spe-
cializer. We discuss three empirical results that support this
claim.

The convolve benchmark was run in two different ways;
each fixed a different argument to the convolution function.
The first way, conv-VI, exposed a large optimization op-
portunity, and while the second, conv-FI — varying the
images while fixing the matrix — did not, since the convo-
lution matrix is generally small enough to fit into a processor
cache, the specializer still created a new specialization, start-
ing from a different dispatch point, that eliminated several
computations involving the matrix for a speedup of around
20%. Existing staged specializers, limited to annotating the
function in just one way, would be unable to specialize on
both of these usage patterns.5

Second, the specializer was able to optimize a semi-invariant
data structure in the query benchmark. query applies an
array of predicates to each element in a large dataset. We
modified the benchmark to periodically update certain pred-
icates in place. The specializer was still able to detect and
optimize the constant predicates in the semi-invariant pred-
icate array, something that a staged specializer could not
do, since the variable pointing to the current predicate is
only constant some of the time, and hence would be hard to
annotate.

4The steady-state profiling overheads for em3d were measured at
the default sampling interval of 1000, before the sampling interval
was ever doubled.
5In fact, if the function were annotated for one type of usage,
and then employed at runtime in the other fashion, several useless
specializations might result.

Third, we analyzed the memory behavior of interpreter
running bubblesort to track transient constants in the form
of constants embedded in the interpreted program. The spe-
cializer identified 23% of the dynamic memory loads from
bubblesort’s “address space” (mostly of the start and end
pointers of the array to be sorted, as the algorithm looped
over the elements) as constant and optimized them away,
which a staged specializer could not do; this represented the
removal of 9.6% of all loads in the interpreter’s execution.

Is efficient invalidation checking feasible? As dis-
cussed in Section 5, our write barrier approach to invali-
dation does not require excessive overhead and is relatively
easy to implement. Java’s type system helps to reduce the
number of barriers to be inserted. The combination of mask-
ing and using object headers does a good job of keeping
barrier overhead low.

We also presented a number of other invalidation schemes
that can be adopted based on the properties of the virtual
machine and the hardware on which the specializer is run-
ning. A hardware-based solution like Mondrian is likely to
be the easiest to implement. There is some evidence that
GC-based detection will also work well: 97% of all constants
in these benchmarks resided in 136 entirely constant ob-
jects and arrays, making them ideal candidates for the GC
method, since any writes to the read-only pages in which the
GC places the objects would signify an invalidation. Thus
the invalidation checking overhead for these constants would
essentially be zero.

8. RELATED WORK
Specialization. Program specialization is a well-studied

optimization technique [14, 44, 43, 13, 26, 2, 28, 17, 21,
8, 22, 36, 31]. In its classical form, code is optimized in
a source-to-source transformation. Tempo [13], DyC [21],
and others used code templates to generate specialized code
at runtime once constant values are known. However, they
relied on programmer annotations to specify specialized re-
gions and constant memory locations. Calpa [35] automated
this process by profiling a representative input and inferring
annotations. This profiling step required its own run and
employed a fairly expensive annotation analysis. In some
ways these staged specializers are more powerful than the



one presented in this paper in terms of pure specializing
ability, for instance in supporting techniques like polyvariant
division and precisely controlled loop unrolling. In others,
such as in exploiting concrete heap state or per-execution
runtime behavior, they are less powerful. The specializer in
this paper has the additional benefit of being fully transpar-
ent and immediately beneficial to end users. Suganuma et
al. [45] implemented a form of automatic dynamic special-
ization that does not use any heap constants; as a result, the
system in that paper achieved speedups of 3%-6%. Zhang et
al. [50] have built a value specializer with speedups of 20%
on top of their dynamic optimization framework, Trident.

Dynamic optimization. The profile-and-optimize dy-
namic approach described in this paper is similar to other
transparent dynamic optimization systems, like Mojo [10],
Hotspot [34], and others. In particular, our specializer lever-
ages the Jikes RVM framework [5, 18] for recompiling spe-
cialized methods.

Profiling. The efficiency of our profilers rests on the
Arnold-Ryder sampling framework [6]; we use it to employ
a novel invariance detection profile. We use a method sug-
gested by Calder et al. [11] for gathering hot value data.
The use of optimistic assumptions to motivate dynamic op-
timization was presented by Arnold and Ryder [7].

Trace creation. The main specialization algorithm’s
trace creation procedure draws from on-line partial evalu-
ation techniques [40], and was inspired by Dynamo [9], al-
though Dynamo does not use heap invariants or unroll loops
when optimizing, and only produces one optimized trace per
program point. Sullivan et al. [46] have tailored the Dynamo
framework to optimize interpreters, although their system
requires the insertion of static annotations. The influence
algorithm we designed to find dispatch points approximates
forward dynamic slices, which were introduced by Korel and
Laski [29].

Invalidation. As far as we know, this paper presents
the first implementation and evaluation of a working auto-
matic detection and invalidation system. Calpa [35] pro-
posed an automated detection system by which an offline
points-to analysis is used to determine where to insert in-
validation checks, but we were unable to find an evaluation
of this technique’s overheads. DyC [21] supports manually-
triggered invalidations, but does not provide a mechanism
for actually performing the invalidation on a running spe-
cialized trace. Our use of the Java type system to limit the
number of write barriers inserted for invalidation detection
is related to the semantics-based guards used by Pu et al. to
specialize operating system calls [37]. We use the bitmasking
techniques employed by Diduce [24] to reduce write barrier
overhead. The actual invalidation is similar in end result
to on-stack replacement (OSR) techniques [12, 19]. How-
ever, OSR occurs asynchronously; the compiler compiles a
version of the function custom-built for re-entry while the
original version is still executing. Our invalidation mecha-
nism must act immediately, and so we construct the initial
specialization so that invalidation can occur as soon as an
offending write has been detected, and without recompila-
tion. Another invalidation technique we suggested is based
on Mondrian memory protection [49].

To the best of our knowledge, this is the first implemen-
tation of a transparent runtime specializer that uses heap
data. While Sastry [42] proposed a runtime specialization
system, that work relied on offline compilation techniques to

emulate a runtime specializer, and had no support for inval-
idation. In addition, the techniques proposed in this paper
for detecting specialization points, generating traces, and
linking them are simpler and lead to better specializations
on the same benchmarks.

9. CONCLUSION
This paper described the design of a transparent dynamic

specializer. To the best of our knowledge, this is the first
such heap-based system that is dynamic and does not rely
on programmer annotations, separate profiling runs, or of-
fline preprocessing. We presented several techniques that
enable this implementation: (1) store-profile based opti-
mistic, accurate, and fine-grained detection of heap invari-
ance, (2) the influence-based dispatch identification method,
(3) constant-propagation based generation of specialized traces,
and (4) an efficient write barrier-based invalidation scheme.

The store profile enables detection of heap constants that
existing systems cannot. Our evaluation showed that this
profile can be collected at low overheads and with high ac-
curacy. The influence metric is able to find the best dispatch
points with high reliability. The invalidation mechanism op-
erates with low overhead. The current implementation of
the specializer in Jikes RVM has low overhead in practice,
accurately selects beneficial specialization points, and pro-
duces speedups of 1.2x to 6.4x on a variety of benchmarks.
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APPENDIX

A. LINEAR-TIME INFLUENCE ALGORITHM
We present an algorithm for computing the influence of

an instruction n that is linear in the number of instructions
in the graph. We exploit the fact that the graph is reducible
to precompute closed-form summaries of the needed expec-
tation properties for loops.

Recall that the influence is the expected path length from
the first occurrence of n to the end of the function. If the
control flow graph is acyclic, it is easy to compute the influ-
ence of n via depth-first search, as there are a finite number
of paths.

If we allow loops, but require that n is not in a loop itself,
we can compute influence in the following manner. Assume
that we have a way to compute the expected path length, l,
from the beginning of a loop until it is exited (we describe
such a way below). Then, since n is not in a loop, we can re-

e

n

p

s

o

Figure 11: A loop. The dotted edges represent arbi-

trary acyclic control flow.

place each loop in the graph by a summary node of “length”
l, and compute influence the acyclic way.

The difficulty arises if n is in a loop. Consider a standalone
loop, as in Figure 11. The loop can have arbitrary branches
and so on inside it, as long as it does not have any inner
loops. (We will discuss nested loops further below.)

If n is in a loop, we can reformulate the expected path
length from n to the end of the loop as the probability that
the loop is reached in a given function invocation, times the
probability of ever getting to n from the start of the loop,
F (n), times the expected path length from n to the end of
the loop, L(n). (The expected path length through the rest
of the function is computed as normal.)

influence(n) =
count(p)

count(start)
F (n)L(n) (11)

where start is the first instruction of the function.
To compute F (n) and L(n), we first need to describe some

properties of the loop. See Figure 11 for a sample loop. s is
the loop’s entry node, and e is the loop’s exit node.

b. Probability of taking the backedge. Simply count(backedge)
count(e)

.

l. Expected length of a loop iteration, from s to s. Can be
computed by DFS since all paths within the loop are acyclic.

f(n). Probability of reaching n from s on one arbitrary
loop iteration (i.e. without reaching s again). Computed
like l above.

r(n). Expected length of an acyclic path from n to o.
Computed like l above.

A.1 Computing F (n)

How can execution go from s to n? It can go directly on
the first iteration of the loop, or miss n and hit it on the
second iteration, or miss it again and hit it on the third
iteration, and so on. Formally,

F (n) =

∞X
i=0

((1 − f(n))b)i · f(n) (12)

Each (1 − f(n))b represents a loop iteration that missed n,
and the final f(n) is there because eventually a successful
path to n must be taken. The closed form of

P∞
i=0 ri when

r < 1 (as b must be) is 1
1−r

, so we have

F (n) =
f(n)

1 − (1 − f(n))b
(13)
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Figure 12: Nested loops. The inner loop variables have

been primed.

A.2 Computing L(n)

The expected length of a (cyclic) path from n to o is the
expected length of the acyclic path from n to o, r(n), plus
the probability of doing one additional loop before exiting
times the expected length of the loop, plus the probability
of doing two additional loops before exiting times twice the
expected length of the loop, etc.

L(n) = r(n) + (1 − b)

∞X
i=0

ilbi (14)

The (1−b) factor is needed because eventually the exit edge
from e to o must be taken.

The closed form of x =
P∞

i=0 iri when r < 1 is r
(1−r)2

.

Thus we have

L(n) = r(n) +
lb

1 − b
(15)

With these closed forms, we can compute the influence of
any node in a loop relative to the rest of the loop in linear
time.

A.3 Handling Nested Loops
Consider a properly formed nested loop, as in Figure 12.

The variables in the inner loop have been primed, and we
prime associated loop properties as well (e.g. the probability
of taking the inner backedge is b′). We assume that these
properties have already been computed.

Computing the influence of nodes that are in the outer
loop but not in the inner one is straightforward: we can just
replace the inner loop by a summary node with length of
the expected path length through the loop. This number
is identical to computing L(n) from the top of the loop —
one pass through the loop plus the chance of doing another
iteration times its length, etc.:

l′ + (1 − b′)

∞X
i=0

il′b′i (16)

= l′ +
l′b′

1 − b′
(17)

=
l′

1 − b′
(18)

Thus this value is exactly equal to F (s′)L(s′),

F (s′)L(s′) =
f(s′)

1 − (1 − f(s′))b′
(r(s′) +

l′b′

1 − b′
) (19)

=
1

1
(l′ +

l′b′

1 − b′
) (20)

=
l′

1 − b′
(21)

which is to be expected, since F (s′)L(s′) computes the same
value: the expected path length of one complete execution
of the inner loop.

To expand the influence computation of nodes in the inner
loop to the outer loop, we use the loop properties of the inner
loop that we have already computed.

Specifically, to compute the influence of the node n in the
inner loop, we determine the needed variables:

b. The backedge weight from e to s, as normal.
l. Also computed normally for the outer loop, using the

summary node for the inner loop.
f(n). Probability of reaching n from p. This is just f(s′)F ′(n):

the probability of getting to s′ from p times the probability
of ever reaching n from s′.

r(n). Expected length of an acyclic path from n to o. This
is L′(n) + r(o′): the expected length of the path from n to
o′ plus the expected length of the path from o′ to o.

Note again that, given our old cached values from the
inner loop, these new values are computed in linear time
using only the nodes in the outer loop. We then apply these
values to the closed-form influence equation above for the
outer loop. We keep expanding outward in this fashion, and
since the same node is never visited twice, the algorithm is
linear in the size of the graph.


